Conception d - PowerPoint PPT Presentation

About This Presentation
Title:

Conception d

Description:

Conception d'un processeur DSP faible nergie en logique ternaire ... Ternary case: radix r = 3. Logic states: {0,1,2} r-1 different sources of power ... – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 22
Provided by: oliviers2
Category:
Tags: conception | radix

less

Transcript and Presenter's Notes

Title: Conception d


1
Conception dun processeur DSP faible énergie en
logique ternaire
  • O. SENTIEYS, M. ALINE, E. KINVI-BOH

Université de Rennes - ENSSAT IRISA
sentieys_at_enssat.fr
FTFC 2003, Paris, 14-16 Mai 2003
2
Outline
  • Motivations
  • MVL implementation with SUS-LOC
  • Principle of SUS-LOC structures
  • Characterization at the transistor-level
  • Characterization at the gate-level
  • Design of a ternary DSP structure
  • Experimental results and comparisons
  • Conclusion and future works

3
Multiple Valued Logic (MVL)
  • Currently, computers and other electronic devices
    run as 101101 binary logic with 2 logical
    states 0, 1
  • MVL can offer
  • Many logical states 0, 1, 2, 3,
  • More complex functions
  • in less time, power and area than binary ?
  • MVL circuit structure ?

4
MVL Circuits Structures
  • Current-Mode CMOS Logic (CMCL) 3
  • Voltage-Mode nMOS technology 16
  • QCD or CCD technology 12
  • Supplementary Symmetrical Logic Circuit Structure
    (SUS-LOC) 811
  • Voltage-Mode (i.e. CMOS)
  • Energy Efficient
  • A new promising structure

5
Technical advantages of SUS-LOC MVL circuits and
devices
  • A decrease of passive parasitic values
  • A decrease in required power (dynamic and static)
  • Ability to perform multiple logic functions in
    one operation
  • e.g. (AB) AND D
  • Security, confidentiality
  • An increase in data density
  • Interconnections
  • e.g. 40 bits become 25 terts1 (37.5 reduction),
    or 20 4L-digits
  • More bandwidth with a reduced clock rate
  • 16 bits f? 10 terts
  • 1 Mbit/s ? 750 ktert/s
  • Reduced package size

1 terts stands for ternary digits
6
SUS-LOC structures
SUS-LOC principle
Transistor library
Characterization Process
  • Principle
  • Ternary case radix r 3
  • Logic states 0,1,2
  • r-1 different sources of power
  • e.g. 0V, 1.25V, 2.5V
  • r-1 independent controllable paths

VHDL Performance modeling
7
SUS-LOC structures
SUS-LOC principle
Transistor library
Characterization Process
  • Example ternary inverter
  • Truth Table
  • N(x) lt2 1 0gt

VHDL Performance modeling
8
Transistor Library
SUS-LOC principle
Transistor library
Characterization Process
  • Use of depleted and enhanced MOS
    transistors
  • SPICE models
  • 0.25m technolgy
  • 2m SOI technolgy (UCL)

VHDL Performance modeling
Id(Vgs)
MbreakPD
MbreakND
MbreakP
MbreakN
MbreakP
MbreakN
9
Logic Functions
SUS-LOC principle
Transistor library
Characterization Process
  • Ternary CGAND
  • Complementing Generalized AND
  • CGAND(X,Y) N(MAX(x,y))

VHDL Performance modeling
10
CGAND
11
CGAND
12
Characterization
SUS-LOC principle
Transistor library
Characterization Process
  • Transistor-level Validation
  • Delay and Power Characterization

VHDL Performance modeling
13
Characterization
SUS-LOC principle
Transistor library
Characterization Process
  • Transistor-level Validation
  • Delay and Power Characterization
  • e.g. Ternary vs Binary Inverter

VHDL Performance modeling
14
Design of a ternary standard cell library
  • CGAND, CGOR, Inverters,
  • Mux, Tri-state
  • LATCH, D Flip-Flop
  • SRAM memory cell and sense amp.
  • Arithmetic components
  • HA, Pi, Gi, CLA, multiplier
  • 1T-Shifter

15
Gate-level
SUS-LOC principle
Transistor library
Characterization Process
  • VHDL package for simulation
  • STD_TERNARY_LOGIC
  • VHDL set of tools for architecture- and
    gate-level estimations
  • Power, Delay
  • Gate-level simulation

VHDL Performance modeling
ELDO simulation Report file
VHDL Package
Power consumption Delay
VHDL Gate level simulation
Description.vhd
16
Outline
  • Motivations
  • MVL implementation with SUS-LOC
  • Design of a ternary DSP structure
  • Experimental results and comparisons
  • Conclusion and future works

17
A ternary vs. binary DSP
18
Interconnections
  • Bus structure
  • 16 bits become 10 terts
  • 40 bits become 25 terts
  • Activity of wires
  • Binary
  • Ternary

19
SRAM Memory
  • Transistor equivalent, faster access time
  • Up to 50 in energy reduction

20
SRAM Memory
21
Arithmetic structures
  • e.g. 40-bit vs. 25-tert Sklansky Adder
  • 100 vs. 54 Brent and Kung cells

22
Arithmetic structures
  • e.g. 40-bit vs. 25-tert Sklansky Adder
  • 100 vs. 54 Brent and Kung cells

23
Other Structures
24
Conclusion and future works
  • SUS-LOC concepts for a ternary DSP
  • Experiments on representative modules
  • Comparison SUS-LOC vs. CMOS circuits
  • High energy efficiency
  • Future works
  • Prototype chip with an SOI technology
  • 3L and 4L SRAM and Flash memories
  • Optimization of arithmetic structures

25
Test Vectors
Schematic Netlist
Results
Characterization Process
Power, Delay Time
Simulation VHDL (Synopsys)
26
Id F(Vgs)
Id
MBREAK P
MBREAK ND
MBREAK PD
MBREAK N
Vgs
V'tn
Vtp
Vtn
V'tp
0
27
CGAND
28
SUS-LOC structures
  • List of some designed cells
  • Inverter function N(x)lt210gt
  • C0lt200gt, C1lt020gt, C2lt002gt
  • CGOR(x,y)N(MAX(x,y))
  • 2-input multiplier M(x,y)xy
  • M(x,y)xy
  • M(x,y, Cin)(xy)Cin
  • Ternary half-adder
  • THA(x,y,Cin)xyCin
  • 2- or 3-input multiplexers
  • Optimized adders structures
  • Ternary SRAM
Write a Comment
User Comments (0)
About PowerShow.com