Title: Conception d
1Conception dun processeur DSP faible énergie en
logique ternaire
- O. SENTIEYS, M. ALINE, E. KINVI-BOH
Université de Rennes - ENSSAT IRISA
sentieys_at_enssat.fr
FTFC 2003, Paris, 14-16 Mai 2003
2Outline
- Motivations
- MVL implementation with SUS-LOC
- Principle of SUS-LOC structures
- Characterization at the transistor-level
- Characterization at the gate-level
- Design of a ternary DSP structure
- Experimental results and comparisons
- Conclusion and future works
3Multiple Valued Logic (MVL)
- Currently, computers and other electronic devices
run as 101101 binary logic with 2 logical
states 0, 1 - MVL can offer
- Many logical states 0, 1, 2, 3,
- More complex functions
- in less time, power and area than binary ?
- MVL circuit structure ?
4MVL Circuits Structures
- Current-Mode CMOS Logic (CMCL) 3
- Voltage-Mode nMOS technology 16
- QCD or CCD technology 12
- Supplementary Symmetrical Logic Circuit Structure
(SUS-LOC) 811 - Voltage-Mode (i.e. CMOS)
- Energy Efficient
- A new promising structure
5Technical advantages of SUS-LOC MVL circuits and
devices
- A decrease of passive parasitic values
- A decrease in required power (dynamic and static)
- Ability to perform multiple logic functions in
one operation - e.g. (AB) AND D
- Security, confidentiality
- An increase in data density
- Interconnections
- e.g. 40 bits become 25 terts1 (37.5 reduction),
or 20 4L-digits - More bandwidth with a reduced clock rate
- 16 bits f? 10 terts
- 1 Mbit/s ? 750 ktert/s
- Reduced package size
1 terts stands for ternary digits
6SUS-LOC structures
SUS-LOC principle
Transistor library
Characterization Process
- Principle
- Ternary case radix r 3
- Logic states 0,1,2
- r-1 different sources of power
- e.g. 0V, 1.25V, 2.5V
- r-1 independent controllable paths
VHDL Performance modeling
7SUS-LOC structures
SUS-LOC principle
Transistor library
Characterization Process
- Example ternary inverter
- Truth Table
- N(x) lt2 1 0gt
VHDL Performance modeling
8Transistor Library
SUS-LOC principle
Transistor library
Characterization Process
- Use of depleted and enhanced MOS
transistors - SPICE models
- 0.25m technolgy
- 2m SOI technolgy (UCL)
VHDL Performance modeling
Id(Vgs)
MbreakPD
MbreakND
MbreakP
MbreakN
MbreakP
MbreakN
9Logic Functions
SUS-LOC principle
Transistor library
Characterization Process
- Ternary CGAND
- Complementing Generalized AND
- CGAND(X,Y) N(MAX(x,y))
VHDL Performance modeling
10CGAND
11CGAND
12Characterization
SUS-LOC principle
Transistor library
Characterization Process
- Transistor-level Validation
- Delay and Power Characterization
VHDL Performance modeling
13Characterization
SUS-LOC principle
Transistor library
Characterization Process
- Transistor-level Validation
- Delay and Power Characterization
- e.g. Ternary vs Binary Inverter
VHDL Performance modeling
14Design of a ternary standard cell library
- CGAND, CGOR, Inverters,
- Mux, Tri-state
- LATCH, D Flip-Flop
- SRAM memory cell and sense amp.
- Arithmetic components
- HA, Pi, Gi, CLA, multiplier
- 1T-Shifter
15Gate-level
SUS-LOC principle
Transistor library
Characterization Process
- VHDL package for simulation
- STD_TERNARY_LOGIC
- VHDL set of tools for architecture- and
gate-level estimations - Power, Delay
- Gate-level simulation
VHDL Performance modeling
ELDO simulation Report file
VHDL Package
Power consumption Delay
VHDL Gate level simulation
Description.vhd
16Outline
- Motivations
- MVL implementation with SUS-LOC
- Design of a ternary DSP structure
- Experimental results and comparisons
- Conclusion and future works
17A ternary vs. binary DSP
18Interconnections
- Bus structure
- 16 bits become 10 terts
- 40 bits become 25 terts
- Activity of wires
- Binary
- Ternary
19SRAM Memory
- Transistor equivalent, faster access time
- Up to 50 in energy reduction
20SRAM Memory
21Arithmetic structures
- e.g. 40-bit vs. 25-tert Sklansky Adder
- 100 vs. 54 Brent and Kung cells
22Arithmetic structures
- e.g. 40-bit vs. 25-tert Sklansky Adder
- 100 vs. 54 Brent and Kung cells
23Other Structures
24Conclusion and future works
- SUS-LOC concepts for a ternary DSP
- Experiments on representative modules
- Comparison SUS-LOC vs. CMOS circuits
- High energy efficiency
- Future works
- Prototype chip with an SOI technology
- 3L and 4L SRAM and Flash memories
- Optimization of arithmetic structures
-
25Test Vectors
Schematic Netlist
Results
Characterization Process
Power, Delay Time
Simulation VHDL (Synopsys)
26Id F(Vgs)
Id
MBREAK P
MBREAK ND
MBREAK PD
MBREAK N
Vgs
V'tn
Vtp
Vtn
V'tp
0
27CGAND
28SUS-LOC structures
- List of some designed cells
- Inverter function N(x)lt210gt
- C0lt200gt, C1lt020gt, C2lt002gt
- CGOR(x,y)N(MAX(x,y))
- 2-input multiplier M(x,y)xy
- M(x,y)xy
- M(x,y, Cin)(xy)Cin
- Ternary half-adder
- THA(x,y,Cin)xyCin
- 2- or 3-input multiplexers
- Optimized adders structures
- Ternary SRAM