Immunological Bioinformatics - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Immunological Bioinformatics

Description:

Processing, combined predictions, and rational epitope selection ... of cleavage-determining amino acid motifs present around the scissile bond ... – PowerPoint PPT presentation

Number of Views:244
Avg rating:3.0/5.0
Slides: 34
Provided by: clauslun
Category:

less

Transcript and Presenter's Notes

Title: Immunological Bioinformatics


1
Immunological Bioinformatics
  • Processing, combined predictions, and rational
    epitope selection

2
Cellular Immunity
3
Proteasome specificity
  • Low polymorphism
  • Constitutive Immuno-proteasome
  • Evolutionary conserved
  • Stochastic and low specificity
  • Only 70-80 of the cleavage sites are reproduced
    in repeated experiments

4
Proteasome evolution (b1 unit)
Human (Hs) - Human Drosophila (Dm) - Fly Bos
Taurus (Bota) - Cow Oncorhynchus mykiss (Om) -
Fish
Constitutive
Immuno
5
Immuno- and Constitutive proteasome specificity
Immuno
Constitutive
P1
P1
...LVGPTPVNIIGRNMLTQL..
6
Predicting proteasomal cleavage
  • NetChop
  • Neural network based method
  • PaProc
  • Weight matrix based method
  • FragPredict
  • Based on a statistical analysis of
    cleavage-determining amino acid motifs present
    around the scissile bond
  • i.e. also weight matrix like

7
NetChop 3.0 Cterm (MHC ligands)
  • NetChop-3.0 C-term
  • Trained on class I epitopes
  • Most epitopes are generated by the immuno
    proteasome
  • Predicts the immuno proteasome specificity

LDFVRFMGVMSSCNNPA LVQEKYLEYRQVPDSDP
RTQDENPVVHFFKNIVT TPLIPLTIFVGENTGVP
LVPVEPDKVEEATEGEN YMLDLQPETTDLYCYEQ
PVESMETTMRSPVFTDN ISEYRHYCYSLYGTTLE
AAVDAGMAMAGQSPVLR QPKKVKRRLFETRELTD
LGEFYNQMMVKAGLNDD GYGGRASDYKSAHKGLK
KTKDIVNGLRSVQTFAD LVGFLLLKYRAREPVTK
SVDPKNYPKKKMEKRFV SSSSTPLLYPSLALPAP
FLYGALLLAEGFYTTGA
8
NetChop20S-3.0In vitro digest data from the
constitutive proteasome
Toes et al., J.exp.med. 2001
9
Prediction performance
10
Predicting proteasomal cleavage
NetChop20S-3.0
NetChop-3.0
  • Relative poor predictive performance
  • For MHC prediction CC0.92 and AUC0.95

11
Proteasome specificity
  • NetChop is one of the best available cleavage
    method
  • www.cbs.dtu.dk/services/NetChop-3.0

12
Cellular Immunity
13
What does TAP do?
14
TAP affinity prediction
  • Transporter Associated with antigen Processing
  • Binds peptides 9-18 long
  • Binding determined mostly by N1-3 and C terminal
    amino acids

15
TAP binding motif matrix
A low matrix entry corresponds to an amino acid
well suited for TAP binding
Peters et el., 2003. JI, 171 1741.
16
TAP affinity prediction
17
Predicting TAP affinity
9 meric peptides
gt9 meric
ILRGTSFVYV -0.11 0.09 - 0.42 - 0.3 -0.74
Peters et el., 2003. JI, 171 1741.
18
Integrating all three steps (protesaomal
cleavage, TAP transport and MHC binding) should
lead to improved identification of peptides
capable of eliciting CTL responses
Integration?
19
Identifying CTL epitopes
HLA affinity
Proteasomal cleavage
TAP affinity
1 EBN3_EBV YQAYSSWMY 2.56 1.00 0.03 0.34 0.99
0.02 0.01 0.75 0.94 0.92 2.97 0 2.80 2 EBN3_EBV
QSDETATSH 2.22 0.01 0.28 0.88 0.04 0.83 0.51 0.30
0.11 0.99 -0.80 0 2.28 3 EBN3_EBV PVSPAVNQY 1.55
0.01 0.97 0.01 0.22 0.21 1.00 0.02 0.04 1.00
2.63 0 1.78 4 EBN3_EBV AYSSWMYSY 1.31 0.34 0.99
0.02 0.01 0.75 0.94 0.92 0.09 1.00 3.28 1 1.58 5
EBN3_EBV LAAGWPMGY 1.02 1.00 0.97 0.22 0.01 0.18
0.01 0.06 0.01 1.00 3.01 0 1.27 6 EBN3_EBV
IVQSCNPRY 0.99 0.10 0.97 0.50 0.05 0.01 0.01 0.01
0.02 0.93 3.19 0 1.24 7 EBN3_EBV FLQRTDLSY 0.94
0.46 0.99 0.02 0.82 0.07 0.01 0.63 0.01 0.96
2.79 0 1.18 8 EBN3_EBV YTDHQTTPT 1.15 1.00 0.01
0.42 0.02 0.04 0.01 0.02 0.54 0.14 -0.87 0 1.12 9
EBN3_EBV GTDVVQHQL 0.96 0.01 0.02 0.03 0.99 1.00
0.02 0.46 0.30 1.00 0.53 0 1.09 ...
20
(No Transcript)
21
Large scale method validation
HIV A3 epitope predictions
22
Pathogen and population coverage
  • How to hit them all in a few strokes

23
HCV Genotypes
24
Genotype Variation
25
Genotype variation
HIV-1 CRF02_AG (a), HCV genotype 4 (b) and HCV
genotype 1 (c)
de Oliveira et al., Nature 444, 836-837(14
December 2006)
26
GenoCover
Select peptide with maximal coverage
Top Scoring Peptides
Genotype 1
Genotype 2
Select peptide with maximal coverage preferring
uncovered strains
Genotype 3
Genotype 4
Genotype 5
Genotype 6
Select peptide with maximal coverage preferring
lowest covered strains
Repeat until the desired number of peptides is
selected
27
HCV Results - B7
Genome Coverage
Peptides
Predicted affinity (nM)
Peptide
Genotype 1
QPRGRRQPI
5
4
5
Genotype 2
SPRGSRPSW
43
3
4
Genotype 3
2
3
66
DPRRRSRNL
Genotype 4
3
RARAVRAKL
6
3
Genotype 5
3
TPAETTVRL
38
3
Genotype 6
3
Verified B7 supertype restricted CD8 epitope
in the Los Alamos HCV epitope database
28
Population Diversity
http//static.howstuffworks.com/gif/population-six
-billion-1.jpg
29
MHC-Cover
Select peptide with maximal MHC coverage
Top Scoring Peptides
HLA-A0101
HLA-A0201
Select peptide with maximal MHC coverage
preferring uncovered MHCs
HLA-A0301
HLA-B0702
HLA-B2705
HLA-B4402
Select peptide with maximal MHC coverage
preferring lowest covered HLAs
Repeat until the desired number of peptides is
selected
30
Population diversity
http//www.piperreport.com/archives/Images/Marketi
ng20to20Diverse20Medicare20Population.jpg
31
MHC-Cover
Select peptide with maximal population coverage
Top Scoring Peptides
HLA-A0101
HLA-A0201
Select peptide with maximal coverage preferring
uncovered MHCs with highest population coverage
HLA-A0301
HLA-B0702
HLA-B2705
HLA-B4402
Select peptide with maximal coverage preferring
lowest covered HLAs with highest population
coverage
Repeat until the desired number of peptides is
selected
32
Epi-select
Select peptide with maximal population coverage
and maximal genotype coverage
Genotype 1
HLA-A0101
Genotype 2
HLA-A0201
Genotype 3
Select peptide with maximal coverage preferring
uncovered MHCs with highest population coverage
and maximal genotype coverage
HLA-A0301
Genotype 4
HLA-B0702
Genotype 5
HLA-B2705
Genotype 6
HLA-B4402
Select peptide with maximal coverage preferring
lowest covered HLAs with highest population
coverage and maximal genotype coverage
Repeat until the desired number of peptides is
selected
33
Reaching optimal coverage
HCV Genotypes
Write a Comment
User Comments (0)
About PowerShow.com