Title: Immunological Bioinformatics
1Immunological Bioinformatics
- Processing, combined predictions, and rational
epitope selection
2Cellular Immunity
3Proteasome specificity
- Low polymorphism
- Constitutive Immuno-proteasome
- Evolutionary conserved
- Stochastic and low specificity
- Only 70-80 of the cleavage sites are reproduced
in repeated experiments
4Proteasome evolution (b1 unit)
Human (Hs) - Human Drosophila (Dm) - Fly Bos
Taurus (Bota) - Cow Oncorhynchus mykiss (Om) -
Fish
Constitutive
Immuno
5Immuno- and Constitutive proteasome specificity
Immuno
Constitutive
P1
P1
...LVGPTPVNIIGRNMLTQL..
6Predicting proteasomal cleavage
- NetChop
- Neural network based method
- PaProc
- Weight matrix based method
- FragPredict
- Based on a statistical analysis of
cleavage-determining amino acid motifs present
around the scissile bond - i.e. also weight matrix like
7NetChop 3.0 Cterm (MHC ligands)
- NetChop-3.0 C-term
- Trained on class I epitopes
- Most epitopes are generated by the immuno
proteasome - Predicts the immuno proteasome specificity
LDFVRFMGVMSSCNNPA LVQEKYLEYRQVPDSDP
RTQDENPVVHFFKNIVT TPLIPLTIFVGENTGVP
LVPVEPDKVEEATEGEN YMLDLQPETTDLYCYEQ
PVESMETTMRSPVFTDN ISEYRHYCYSLYGTTLE
AAVDAGMAMAGQSPVLR QPKKVKRRLFETRELTD
LGEFYNQMMVKAGLNDD GYGGRASDYKSAHKGLK
KTKDIVNGLRSVQTFAD LVGFLLLKYRAREPVTK
SVDPKNYPKKKMEKRFV SSSSTPLLYPSLALPAP
FLYGALLLAEGFYTTGA
8NetChop20S-3.0In vitro digest data from the
constitutive proteasome
Toes et al., J.exp.med. 2001
9Prediction performance
10Predicting proteasomal cleavage
NetChop20S-3.0
NetChop-3.0
- Relative poor predictive performance
- For MHC prediction CC0.92 and AUC0.95
11Proteasome specificity
- NetChop is one of the best available cleavage
method - www.cbs.dtu.dk/services/NetChop-3.0
12Cellular Immunity
13What does TAP do?
14TAP affinity prediction
- Transporter Associated with antigen Processing
- Binds peptides 9-18 long
- Binding determined mostly by N1-3 and C terminal
amino acids
15TAP binding motif matrix
A low matrix entry corresponds to an amino acid
well suited for TAP binding
Peters et el., 2003. JI, 171 1741.
16TAP affinity prediction
17Predicting TAP affinity
9 meric peptides
gt9 meric
ILRGTSFVYV -0.11 0.09 - 0.42 - 0.3 -0.74
Peters et el., 2003. JI, 171 1741.
18Integrating all three steps (protesaomal
cleavage, TAP transport and MHC binding) should
lead to improved identification of peptides
capable of eliciting CTL responses
Integration?
19Identifying CTL epitopes
HLA affinity
Proteasomal cleavage
TAP affinity
1 EBN3_EBV YQAYSSWMY 2.56 1.00 0.03 0.34 0.99
0.02 0.01 0.75 0.94 0.92 2.97 0 2.80 2 EBN3_EBV
QSDETATSH 2.22 0.01 0.28 0.88 0.04 0.83 0.51 0.30
0.11 0.99 -0.80 0 2.28 3 EBN3_EBV PVSPAVNQY 1.55
0.01 0.97 0.01 0.22 0.21 1.00 0.02 0.04 1.00
2.63 0 1.78 4 EBN3_EBV AYSSWMYSY 1.31 0.34 0.99
0.02 0.01 0.75 0.94 0.92 0.09 1.00 3.28 1 1.58 5
EBN3_EBV LAAGWPMGY 1.02 1.00 0.97 0.22 0.01 0.18
0.01 0.06 0.01 1.00 3.01 0 1.27 6 EBN3_EBV
IVQSCNPRY 0.99 0.10 0.97 0.50 0.05 0.01 0.01 0.01
0.02 0.93 3.19 0 1.24 7 EBN3_EBV FLQRTDLSY 0.94
0.46 0.99 0.02 0.82 0.07 0.01 0.63 0.01 0.96
2.79 0 1.18 8 EBN3_EBV YTDHQTTPT 1.15 1.00 0.01
0.42 0.02 0.04 0.01 0.02 0.54 0.14 -0.87 0 1.12 9
EBN3_EBV GTDVVQHQL 0.96 0.01 0.02 0.03 0.99 1.00
0.02 0.46 0.30 1.00 0.53 0 1.09 ...
20(No Transcript)
21Large scale method validation
HIV A3 epitope predictions
22Pathogen and population coverage
- How to hit them all in a few strokes
23HCV Genotypes
24Genotype Variation
25Genotype variation
HIV-1 CRF02_AG (a), HCV genotype 4 (b) and HCV
genotype 1 (c)
de Oliveira et al., Nature 444, 836-837(14
December 2006)
26GenoCover
Select peptide with maximal coverage
Top Scoring Peptides
Genotype 1
Genotype 2
Select peptide with maximal coverage preferring
uncovered strains
Genotype 3
Genotype 4
Genotype 5
Genotype 6
Select peptide with maximal coverage preferring
lowest covered strains
Repeat until the desired number of peptides is
selected
27HCV Results - B7
Genome Coverage
Peptides
Predicted affinity (nM)
Peptide
Genotype 1
QPRGRRQPI
5
4
5
Genotype 2
SPRGSRPSW
43
3
4
Genotype 3
2
3
66
DPRRRSRNL
Genotype 4
3
RARAVRAKL
6
3
Genotype 5
3
TPAETTVRL
38
3
Genotype 6
3
Verified B7 supertype restricted CD8 epitope
in the Los Alamos HCV epitope database
28Population Diversity
http//static.howstuffworks.com/gif/population-six
-billion-1.jpg
29MHC-Cover
Select peptide with maximal MHC coverage
Top Scoring Peptides
HLA-A0101
HLA-A0201
Select peptide with maximal MHC coverage
preferring uncovered MHCs
HLA-A0301
HLA-B0702
HLA-B2705
HLA-B4402
Select peptide with maximal MHC coverage
preferring lowest covered HLAs
Repeat until the desired number of peptides is
selected
30Population diversity
http//www.piperreport.com/archives/Images/Marketi
ng20to20Diverse20Medicare20Population.jpg
31MHC-Cover
Select peptide with maximal population coverage
Top Scoring Peptides
HLA-A0101
HLA-A0201
Select peptide with maximal coverage preferring
uncovered MHCs with highest population coverage
HLA-A0301
HLA-B0702
HLA-B2705
HLA-B4402
Select peptide with maximal coverage preferring
lowest covered HLAs with highest population
coverage
Repeat until the desired number of peptides is
selected
32Epi-select
Select peptide with maximal population coverage
and maximal genotype coverage
Genotype 1
HLA-A0101
Genotype 2
HLA-A0201
Genotype 3
Select peptide with maximal coverage preferring
uncovered MHCs with highest population coverage
and maximal genotype coverage
HLA-A0301
Genotype 4
HLA-B0702
Genotype 5
HLA-B2705
Genotype 6
HLA-B4402
Select peptide with maximal coverage preferring
lowest covered HLAs with highest population
coverage and maximal genotype coverage
Repeat until the desired number of peptides is
selected
33Reaching optimal coverage
HCV Genotypes