Title: Geometric Representations of Graphs
1Geometric Representations of Graphs
- A survey of recent results and problems
- Jan KratochvÃl, Prague
2Outline of the Talk
- Intersection Graphs
- Recognition of the Classes
- Sizes of Representations
- Optimization Problems
- Interval Filament Graphs
- Representations of Planar Graphs
3Intersection Graphs
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
4Interval graphs INT
5Interval graphs INT
Circular Arc graphs CA
6Interval graphs INT
Circular Arc graphs CA
Circle graphs CIR
7Polygon-Circle graphs PC
Circular Arc graphs CA
Circle graphs CIR
8SEG
9CONV
SEG
10CONV
SEG
STRING
11STR
CONV
SEG
PC
CIR
CA
INT
122. Complexity of Recognition
- Upper bound Lower bound
- P
- NP NP-hard
- PSPACE
- Decidable
- Unknown
13Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
CA
CA
INT
INT
14Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
CA
CA
INT
INT
15Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
CA
CA
INT
INT
Gilmore, Hoffman 1964
16Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
CA
CA
INT
INT
Gilmore, Hoffman 1964
17Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
18Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
19Lower bound
Upper bound
STR
STR
CONV
CONV
SEG
SEG
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
20Lower bound
Upper bound
STR
STR
J.K. 1991
CONV
CONV
J.K. 1991
SEG
SEG
J.K. 1991
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
21Lower bound
Upper bound
STR
STR
J.K. 1991
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
SEG
SEG
J.K. 1991
K-M 1994
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
22Lower bound
Upper bound
STR
STR
J.K. 1991
Pach, Tóth 2001 Schaefer, Štefankovic 2001
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
SEG
SEG
J.K. 1991
K-M 1994
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
23Lower bound
Upper bound
STR
STR
J.K. 1991
Schaefer, Sedgwick, Å tefankovic 2002
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
SEG
SEG
J.K. 1991
K-M 1994
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
24Lower bound
Upper bound
STR
STR
J.K. 1991
Schaefer, Sedgwick, Å tefankovic 2002
?
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
?
SEG
SEG
J.K. 1991
K-M 1994
PC
PC
Koebe 1990
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
25Lower bound
Upper bound
STR
STR
J.K. 1991
Schaefer, Sedgwick, Å tefankovic 2002
?
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
?
SEG
SEG
J.K. 1991
K-M 1994
?
PC
PC
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
26Thm Recognition of CONV graphs is in PSPACE
- Reduction to solvability of polynomial
inequalities in R - ? x1, x2, x3 xn ? R s.t.
- P1(x1, x2, x3 xn) gt 0
- P2(x1, x2, x3 xn) gt 0
-
- Pm(x1, x2, x3 xn) gt 0 ?
27Mv
Mw
Mu
Mz
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
28Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Choose Xuv ? Mu ? Mv for every uv ? EG
29Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Replace Mu by Cu conv(Xuv v s.t. uv ? EG) ?
Mu
Cu ? Cv ? ? ? Mu ? Mv ? ? ? uv
? EG
30Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
31Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
32Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uv ? EG ? Cu ? Cv ?
separating lines
33Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Cu
auwx buwy cuw 0
34Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Cu
auwx buwy cuw 0
Representation is described by inequalities
(auwxuv buwyuv cuw) (auwxwz buwywz cuw) lt
0 for all u,v,w,z s.t.
uv, wz ? EG and uw ? EG
35Lower bound
Upper bound
STR
STR
J.K. 1991
Schaefer, Sedgwick, Å tefankovic 2002
?
CONV
CONV
J.K. 1991
J.K., Matoušek 1994
?
SEG
SEG
J.K. 1991
K-M 1994
?
PC
PC
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
36Polygon-circle graphs representable by polygons
of bounded size
37Polygon-circle graphs representable by polygons
of bounded size
k-PC Intersection graphs of convex k-gons
inscribed to a circle
3-PC
2-PC CIR
4-PC
38Polygon-circle graphs representable by polygons
of bounded size
k-PC Intersection graphs of convex k-gons
inscribed to a circle
3-PC
2-PC CIR
4-PC
PC ? k-PC
?
k2
39Example forcing large number of corners
40Example forcing large number of corners
41Example forcing large number of corners
42PC
5-PC
4-PC
3-PC
CIR 2-PC
43?
PC
5-PC
J.K., M. Pergel 2003
4-PC
3-PC
CIR 2-PC
44Thm For every k ? 3, recognition of k-PC graphs
is NP-complete.
- Proof for k 3.
- Reduction from 3-edge colorability of cubic
graphs. - For cubic G (V,E), construct H (W,F) so that
- ?(G) 3 iff H ? 3-PC
45- W u1, u2, u3, u4, u5, u6 ?
- ae, e ? E ? bv, v ? V
- F u1 u2, u2u3, u3u4, u4u5, u5u6 , u6u1 ?
- aebv, v ? e ? E ?
- bubv, u,v ? V ?
- bvui, v ? V, i 2,4,6
46u1, u2, u3, u4, u5, u6
47u1, u2, u3, u4, u5, u6
ae, e ? E
48u1, u2, u3, u4, u5, u6
ae, e ? E
49u1, u2, u3, u4, u5, u6
ae, e ? E
bv, v ? V
50u1, u2, u3, u4, u5, u6
ae, e ? E
bv, v ? V
?(G) 3 ? H ? 3-PC
51u1, u2, u3, u4, u5, u6
ae, e ? E
bv, v ? V
?(G) gt 3 ? H ? 3-PC
52u1, u2, u3, u4, u5, u6
ae, e ? E
bv, v ? V
?(G) gt 3 ? H ? 3-PC
533. Sizes of Representations
- Membership in NP Guess and verify a
representation - Problem The representation may be of
exponential size - Indeed for SEG and STRING graphs,
NP-membership cannot be proven in this way
54STRING graphs
55STRING graphs
56Abstract Topological Graphs
- G (V,E), R ? ef e,f ? E is realizable if
G has a drawing D in the plane such that for
every two edges e,f ? E, - De ? Df ? ? ? ef ? R
- G (V,E), R ? is realizable iff G is planar
57(No Transcript)
58(No Transcript)
59Worst case functions
- Str(n) min k s.t. every STRING graph on n
vertices has a representation with at most k
crossing points of the curves - At(n) min k s.t. every AT graph with n edges
has a realization with at most k crossing points
of the edges - Lemma Str(n) and At(n) are polynomially
equivalent
60STRING graphs requiring large representations
- Thm (J.K., Matoušek 1991)
- At(n) ? 2cn
- Thm (Schaefer, Å tefankovic 2001)
- At(n) ? n2n-2
61Sizes of SEG representations
- Rational endpoints of segments
- Integral endpoints
- Size of representation max coordinate of
endpoint (in absolute value)
62Sizes of SEG representations
- Thm (J.K., Matoušek 1994) For every n, there is
a SEG graph Gn with O(n2) vertices such that
every SEG representation has size at least - 22n
63Thm (Schaefer, Å tefankovic 2001)
At(n) ? n2n-2
- Lemma In every optimal representation of an AT
graph, if an edge e is crossed by k other edges,
then it carries at most 2k-1 crossing points.
64e crossed by e1, e2, , ek
e
65e crossed by e1, e2, , ek
e
(u1, u2, , uk) - binary vector expressing the
parity of the number of intersections
of e and ei between the beginning of e
and this location
66e crossed by e1, e2, , ek
e
(u1, u2, , uk) - binary vector expressing the
parity of the number of intersections
of e and ei between the beginning of e
and this location
If the number of crossing points on e is ? 2k,
two of these vectors are the same
67e crossed by e1, e2, , ek
e
(u1, u2, , uk) - binary vector expressing the
parity of the number of intersections
of e and ei between the beginning of e
and this location
If the number of crossing points on e is ? 2k,
two of this vectors are the same, and
hence we find a segment on e where all
other edges have even number of
crossing points
68e
69e
70e
712m crossing points with e 4m crossing points with
the circle
e
722m crossing points with e 4m crossing points with
the circle
e
732m crossing points with e 4m crossing points with
the circle
e
Circle inversion
742m crossing points with e 4m crossing points with
the circle
e
Circle inversion
Symmetric flip
752m crossing points with e 4m crossing points with
the circle
e
Circle inversion
Symmetric flip
2m crossing points with the circle, no
new crossing points arouse
762m crossing points with e 4m crossing points with
the circle
e
Circle inversion
Symmetric flip
2m crossing points with the circle, no
new crossing points arouse
Reroute e along the semicircle with fewer number
of crossing points
772m crossing points with e 4m crossing points with
the circle
e
Circle inversion
Symmetric flip
2m crossing points with the circle, no
new crossing points arouse
Reroute e along the semicircle with fewer number
of crossing points
Better realization - m lt 2m
784. Optimization problems
79Determining the chromatic number
STR
CONV
SEG
PC
CIR
CA
INT
80?(G) ? k for fixed k
STR
CONV
SEG
PC
CIR
CA
INT
81Determining the independence number
STR
CONV
SEG
PC
CIR
CA
INT
82Determining the clique number
STR
CONV
J.K., Nešetril 1989
SEG
PC
CIR
CA
INT
83Determining the independence number - Interval
filament graphs
STR
CONV
IFA
Gavril 2000
SEG
PC
CIR
CA
INT
84Interval filament graphs
85A-mixed graphs
- A is a class of graphs.
- G (V,E) is A-mixed if
- E E1 ? E2 and E2 is transitively oriented
so that - xy ? E2 and yz ? E1 imply xz ? E1 , and
- (V,E1) ? A
86Mixed condition
?
87- Thm (Gavril 2000) If WEIGHTED CLIQUE is
polynomial in graphs from class A, then it is
also polynomial in A-mixed graphs.
88- Thm (Gavril 2000) If WEIGHTED CLIQUE is
polynomial in graphs from class A, then it is
also polynomial in A-mixed graphs. - Thm (Gavril 2000)
- CO-IFA (CO-INT)-mixed
89- Thm (Gavril 2000) If WEIGHTED CLIQUE is
polynomial in graphs from class A, then it is
also polynomial in A-mixed graphs. - Thm (Gavril 2000)
- CO-IFA (CO-INT)-mixed
- Corollary WEIGHTED INDEPENDENT SET is polynomial
in IFA graphs
90Interval filament graphs
91Lower bound
Upper bound
STR
STR
J.K. 1991
Schaefer, Sedgwick, Å tefankovic 2002
?
IFA
IFA
?
PC
PC
CIR
CIR
Bouchet 1985
CA
CA
Tucker 1970
INT
INT
Gilmore, Hoffman 1964
926. Representations of Planar Graphs
- Problem (Pollack 1990) Planar ? SEG ?
- Known Planar ? CONV
- Koebe Planar graphs are exactly contact graphs
of disks. - Corollary Planar ? 2-STRING
- Problem (Fellows 1988) Planar ? 1-STRING ?
- De Fraysseix, de Mendez (1997) Planar graphs are
contact graphs of triangles - De Fraysseix, de Mendez (1997) 3-colorable
4-connected triangulations are intersection
graphs of segments - Noy et al. (1999) Planar triangle-free graphs
are in SEG
936. Representations of Co- Planar Graphs
- J.K., Kubena (1999) Co-Planar ? CONV
- Corollary CLIQUE is NP-hard for CONV graphs
- Problem Co-Planar ? SEG ?
94Thank you
956th International Czech-Slovak Symposium
onCombinatorics, Graph Theory, Algorithms and
ApplicationsPrague, July 10-15, 2006
- Honoring the 60th birthday of Jarik Nešetril