Title: Geometric Representations of Graphs
1Geometric Representations of Graphs
- Jan KratochvÃl, DIMATIA, Prague
2Intersection Graphs
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
3String Graphs
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
4Personal Recollections
- 1982 Czech-Slovak Graph Theory, Prague
5Personal Recollections
- 1982 Czech-Slovak Graph Theory, Prague
- 1983 Prague
- 1990 Tempe, Arizona
6Personal Recollections
- 1982 Czech-Slovak Graph Theory, Prague
- 1983 Prague
- 1990 Tempe, Arizona
- 1988 Bielefeld, Germany
7Intersection Graphs
- Every graph is an intersection graph.
8Intersection Graphs
- Every graph is an intersection graph.
Mu e ? EG u ? e
9Intersection Graphs
- Every graph is an intersection graph.
Mu e ? EG u ? e
uv ? EG ? Mu ? Mv ? ?
10Intersection Graphs
- Every graph is an intersection graph
- Restricting the sets
11Intersection Graphs
- Every graph is an intersection graph
- Restricting the sets by geometrical shape
- Motivation and applications in scheduling,
biology, VLSI designs
12Intersection Graphs
- Every graph is an intersection graph
- Restricting the sets by geometrical shape
- Motivation and applications in scheduling,
biology, VLSI designs - Nice characterizations, interesting theoretical
properties, challenging open problems
13Few Examples
14Few Examples
- Interval graphs -
- Gilmore, Hoffman 1964
- Fulkerson, Gross 1965
- Booth, Lueker 1975
- Trotter, Harary 1979
15Few Examples
- Interval graphs -
- - neat characterization
- chordal co-comparability
- - recognizble in linear time
- - most optimization
- problems solvable in polynomial time
- - perfect
16Few Examples
- SEG graphs -
- Ehrlich, Even, Tarjan 1976
- Scheinerman
- Erdös, Gyarfás 1987
- JK, Neetril 1990
- JK, Matouek 1994
- Thomassen 2002
17Few Examples
- SEG graphs -
- - recognition NP-hard and
- in PSPACE,
- NP-membership open
- - coloring, independent
- set NP-hard, complexity of CLIQUE open
- - near-perfectness open
18Near-perfect graph classes
- A graph class G is near-perfect if there exists
a function f such that - ?(G) ? f(?(G))
- for every G ? G.
19Few Examples
- String graphs -
- Sinden 1966
- Ehrlich, Even, Tarjan 1976
- JK 1991
- JK, Matouek 1991
- Pach, Tóth 2001
- tefankovic, Schaffer 2001, 2002
20Few Examples
- CONV graphs -
- Ogden, Roberts 1970
- JK, Matouek 1994
- Agarwal, Mustafa 2004
- Kim, Kostochka,
- Nakprasit 2004
21Few Examples
- PC graphs -
- Fellows 1988
- Koebe 1990
- JK, Kostochka 1994
- Spinrad
- JK, Pergel 2002
- Pergel 2007
22Few Examples
- Circle graphs -
- De Fraysseix 1984
- Bouchet 1985
- Gyarfas 1987
- Unger 1988
- Kloks 1993
- Kostochka 1994
23Few Examples
- Circle graphs -
- - recognizable in linear
- time
- - coloring NP-hard
- - independent set, clique
- solvable in polynomial time
- - near-perfect ? log ? ? ? ? O(2?)
- - close bounds open
24Few Examples
- Circular Arc graphs -
- Tucker 1971, 1980
- Gavril 1974
- Gyarfás 1987
- Spinrad 1988
- Hell, Bang-Jensen, Huang 1990
25Few Examples
- Circular Arc graphs -
- Tucker 1971, 1980
- Gavril 1974
- Gyarfás 1987
- Spinrad 1988
- Hell, Bang-Jensen, Huang 1990
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Outline
- String graphs
- CONV and PC graphs
- Representations of planar graphs
301. String graphs
311. String graphs
321. String graphs
- Sinden 1966 IG(regions)
- Graham 1974
331. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
341. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- Thomas 1988
- IG(topologically con)
- all graphs,
- String IG(arc-connected sets)
351. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- Thomas 1988
- JK 1991 NP-hard
361. String graphs
STRING
SEG
CONV
371. String graphs
STRING
SEG
CONV
381. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- Thomas 1988
- JK 1991 NP-hard
- Recognition in NP?
391. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- Thomas 1988
- JK 1991 NP-hard
- Recognition in NP?
40Abstract Topological Graphs
- G (V,E), R ? ef e,f ? E is realizable if
G has a drawing D in the plane such that for
every two edges e,f ? E, - De ? Df ? ? ? ef ? R
- G (V,E), R ? is realizable iff G is planar
41Worst case functions
- Str(n) min k s.t. every string graph on n
vertices has a representation with at most k
crossing points of the curves - At(n) min k s.t. every AT graph with n edges
has a realization with at most k crossing points
of the edges - Lemma Str(n) and At(n) are polynomially
equivalent
42String graphs requiring large representations
- Thm (J.K., Matouek 1991)
- At(n) ? 2cn
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
471. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- Thomas 1988
- JK 1991 NP-hard
- Recognition in NP?
- Are they recognizable at all?
48Thm (Pach, Tóth 2001) At(n)
? nn Thm (Schaefer, tefankovic 2001)
At(n) ? n2n-2
491. String graphs
- Sinden 1966
- JK, Goljan, Kucera 1982
- JK 1991 NP-hard
- Schaefer, Sedgwick,
- tefankovic 2002
- String graph recognition is in NP (Lempel-Ziv
compression)
501. Some subclasses
511. Some subclasses
521. Some subclasses
- Complements of
- Comparability graphs
- (Golumbic 1977)
53Co-comparability graphs
54Co-comparability graphs
55Co-comparability graphs
? ?
56Co-comparability graphs
57Co-comparability graphs
581. Some subclasses
- Zwischenring graphs
- NP-hard
- (Middendorf, Pfeiffer)
591. Some subclasses
- Outerstring graphs
- NP-hard
- (Middendorf, Pfeiffer)
601. Some subclasses
- Outerstring graphs
- NP-hard
- (Middendorf, Pfeiffer)
611. Some subclasses
- Interval filament graphs
- (Gavril 2000)
- CLIQUE and IND SET
- can be solved in
- polynomial time
622. CONV and PC
- JK, Matouek 1994
- recognition in PSPACE
63Thm Recognition of CONV graphs is in PSPACE
- Reduction to solvability of polynomial
inequalities in R - ? x1, x2, x3 xn ? R s.t.
- P1(x1, x2, x3 xn) gt 0
- P2(x1, x2, x3 xn) gt 0
-
- Pm(x1, x2, x3 xn) gt 0 ?
64Mv
Mw
Mu
Mz
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
65Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Choose Xuv ? Mu ? Mv for every uv ? EG
66Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Replace Mu by Cu conv(Xuv v s.t. uv ? EG) ?
Mu
Cu ? Cv ? ? ? Mu ? Mv ? ? ? uv
? EG
67Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
68Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
69Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
70Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Cu
auwx buwy cuw 0
71Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Xwz
Cu
Xuv
auwx buwy cuw 0
Representation is described by inequalities
(auwxuv buwyuv cuw) (auwxwz buwywz cuw) lt
0 for all u,v,w,z s.t.
uv, wz ? EG and uw ? EG
722. Recognition NP-membership
732. Recognition NP-membership
- Guess and verify
- INT, CA, CIR, PC, Co-Comparability
- IFA mixing characterization
- - CONV, SEG ?
- !! String Lempel-Ziv compression
742. Recognition NP-membership
- Thm (JK, Matouek 1994) For every n there is a
graph Gn ? SEG with O(n2) vertices s.t. every SEG
representation with integer endpoints has a
coordinate of absolute value ? 22n. - Same for CONV (Pergel 2008).
752. CLIQUE in CONV graphs
- CO-PLANAR ? CONV (JK, Kubena 99)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
822. CLIQUE in CONV graphs
- CO-PLANAR ? CONV (JK, Kubena 99)
- Corollary CLIQUE is NP-complete for CONV graphs.
(Since INDEPENDENT SET is NP-complete for planar
graphs.) - CLIQUE in SEG graphs still open (JK, Neetril
1990)
832. CLIQUE in MAX-TOL graphs
842. MAX-TOLERANCE
(Golumbic, Trenk 2004)
852. MAX-TOLERANCE
S Iu u ? VG intervals, tu ? R
tolerances uv ? EG iff Iu ? Iv max tu,
tv
862. MAX-TOLERANCE
Theorem (Kaufmann, JK, Lehmann, Subramarian,
2006) Max-tolerance graphs are exactly
intersection graphs of homothetic triangles
(semisquares)
872. MAX-TOLERANCE
Tu
Tv
tu
Iu
Iv
88- Lemma (folklore) Disjoint convex polygons are
separated by a line parallel to a side of one of
them.
89A
B
C
90Maximal cliques
Q a maximal clique
91Maximal cliques
Q a maximal clique
t
h
v
- h highest basis of Q, v rightmost vertical side,
- t lowest diagonal side
92Maximal cliques
Q a maximal clique
t
h
v
- Q(h,v,t) all triangles that intersect h,v and t
93 94- Claim Q(h,v,t) Q
- Proof
- 1) Q ? Q(h,v,t)
h
95- Claim Q(h,v,t) Q
- Proof
- 1) Q ? Q(h,v,t)
- 2) Q(h,v,t) is a clique
96- Claim Q(h,v,t) Q
- Proof
- 1) Q ? Q(h,v,t)
- 2) Q(h,v,t) is a clique
- Suppose a,b?? Q(h,v,t) are disjoint, hence
separated by a line parallel to one of the sides,
say horizontal.
97- Claim Q(h,v,t) Q
- Proof
- 1) Q ? Q(h,v,t)
- 2) Q(h,v,t) is a clique
a
b
98- Claim Q(h,v,t) Q
- Proof
- 1) Q ? Q(h,v,t)
- 2) Q(h,v,t) is a clique
- b cannot intersect h,
- a contradiction
a
h
b
99Maximal cliques
Q a maximal clique
t
h
v
- Q(h,v,t) all triangles that intersect h,v and
t - Hence G has O(n3) maximal cliques.
1002. Polygon-circle graphs
- PC graphs -
- Fellows 1988
- Koebe 1990
- JK, Kostochka 1994
- Spinrad
- JK, Pergel 2002
- Pergel 2007
1012. Polygon-circle graphs
- PC graphs -
- Fellows 1988
- Koebe 1990
- JK, Kostochka 1994
- Spinrad
- JK, Pergel 2002
- Pergel 2007
1022. Polygon-circle graphs
- PC graphs -
- Fellows 1988
- Koebe 1990
- JK, Kostochka 1994
- Spinrad
- JK, Pergel 2002
- Pergel 2007
1032. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
1042. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
1052. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
Pergel 2007
1062. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
Pergel 2007
1072. Short cycles
1082. Short cycles
- Do short cycles mind?
- Does large
girth help?
109UNIT-DISK
DISK
110UNIT-DISK
DISK
PSEUDO-DISK
1112. Short cycles
- Thm (J.K. 1996) Triangle-free intersection graphs
of pseudodisks are planar.
1122. Short cycles
- Thm (J.K. 1996) Triangle-free intersection graphs
of pseudodisks are planar.
1132. Short cycles
- Thm (J.K. 1996) Triangle-free intersection graphs
of pseudodisks are planar. - Corollary Recognition of triangle-free
PSEUDO-DISK and DISK graphs is polynomial.
114Koebe (1936)
115(No Transcript)
116(No Transcript)
1172. Short cycles
- Thm (J.K. 1996) Triangle-free STRING graphs are
NP-hard to recognize.
1182. Short cycles
- Thm (J.K. 1996) Triangle-free STRING graphs are
NP-hard to recognize. - Thm (JK, Pergel 2007) PC graphs of girth ? 5 can
be recognized in polynomial time. - Thm (JK, Pergel 2007) For each k, recognition of
SEG graphs of girth ? k is NP-hard.
1192. Short cycles
- Problem Is recognition of String graphs of girth
? k NP-complete for every k ? - Thm (JK, Pergel 2007) PC graphs of girth ? 5 can
be recognized in polynomial time. - Thm (JK, Pergel 2007) For each k, recognition of
SEG graphs of girth ? k is NP-hard.
1203. Representations of planar graphs
1213. Representations of planar graphs
1223. Representations of planar graphs
- - Planar graphs are exactly contact graphs of
disks (Koebe 1934)
1233. Representations of planar graphs
- Planar graphs are exactly contact graphs of disks
(Koebe 1934) - PLANAR ? DISK
- PLANAR ? CONV
- PLANAR ? 2-STRING
124(No Transcript)
125(No Transcript)
126(No Transcript)
1273. Representations of planar graphs
- PLANAR ? 2-STRING
- Problem (Fellows 1988) Planar ? 1-STRING ?
- True Chalopin, Gonçalves, and Ochem
- SODA 2007
1283. Representations of planar graphs
- PLANAR ? 2-STRING
- Problem (Fellows 1988) Planar ? 1-STRING ?
- True Chalopin, Gonçalves, and Ochem
- SODA 2007
- - Problem PLANAR ? SEG? (Pollack, Scheinerman,
West, )
1293. Representations of planar graphs
- PLANAR ? SEG (?)
- 3-colorable 4-connected triangulations are
intersection graphs of segments (de Fraysseix, de
Mendez 1997) - Planar triangle-free graphs are in SEG (Noy et
al. 1999) - Planar bipartite graphs are grid intersection
(Hartman et al. 91 Albertson de Fraysseix et
al.)
1303. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
f
e
3
5
e
d
d
c
6
7
2
c
1
4
b
b
a
a
1
2
3
4
5
6
7
1313. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
e
d
c
b
a
1
2
3
4
5
6
7
1323. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
e
d
c
b
a
1
2
3
4
5
6
7
1333. Representations of planar graphs
- PLANAR ? CONV
- Planar graphs are contact graphs of triangles (de
Fraysseix, Ossona de Mendez 1997)
134(No Transcript)
1353. Representations of planar graphs
- PLANAR ? CONV
- Planar graphs are contact graphs of triangles (de
Fraysseix, Ossona de Mendez 1997) - Are planar graphs contact graphs of homothetic
triangles?
1363. Representations of planar graphs
- PLANAR ? CONV
- Planar graphs are contact graphs of triangles (de
Fraysseix, Ossona de Mendez 1997) - Are planar graphs contact graphs of homothetic
triangles? - No
1373. Representations of planar graphs
2
1
b
a
c
3
1383. Representations of planar graphs
2
1
b
a
a
b
c
c
3
2
3
1393. Representations of planar graphs
2
1
b
a
a
b
c
c
3
2
3
1403. Planar open problems
- PLANAR ? MAX-TOL? (Lehmann)
- (i.e. are planar graphs intersection graphs
of homothetic triangles?)
1413. Planar open problems
- PLANAR ? MAX-TOL? (Lehmann)
- Conjecture (Felsner, JK 2007) Planar
- 4-connected triangulations are contact
graphs of homothetic triangles.
1423. Planar open problems
- PLANAR ? MAX-TOL? (Lehmann)
- Conjecture (Felsner, JK 2007) Planar
- 4-connected triangulations are contact
graphs of homothetic triangles. - This would imply that planar graphs are
intersection graphs of homothetic triangles.
1433. Representations of planar graphs
2
1
b
a
c
3
1443. Representations of planar graphs
2
1
b
a
a
b
c
c
3
1453. Representations of planar graphs
2
1
b
a
a
b
c
c
3
1464. Invitation
- Graph Drawing, Crete, Sept 21 24, 2008
- Prague MCW, July 28 Aug 1, 2008
147HAPPY BIRTHDAY Tom !