Geometric Representations of Graphs - PowerPoint PPT Presentation

1 / 147
About This Presentation
Title:

Geometric Representations of Graphs

Description:

String Graphs {Mu, u VG} uv EG Mu Mv. Personal Recollections ... uv EG Mu Mv. Mu = {e EG | u e} Intersection Graphs. Every graph is an intersection graph ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 148
Provided by: acoGa
Category:

less

Transcript and Presenter's Notes

Title: Geometric Representations of Graphs


1
Geometric Representations of Graphs
  • Jan Kratochvíl, DIMATIA, Prague

2
Intersection Graphs
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
3
String Graphs
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
4
Personal Recollections
  • 1982 Czech-Slovak Graph Theory, Prague

5
Personal Recollections
  • 1982 Czech-Slovak Graph Theory, Prague
  • 1983 Prague
  • 1990 Tempe, Arizona

6
Personal Recollections
  • 1982 Czech-Slovak Graph Theory, Prague
  • 1983 Prague
  • 1990 Tempe, Arizona
  • 1988 Bielefeld, Germany

7
Intersection Graphs
  • Every graph is an intersection graph.

8
Intersection Graphs
  • Every graph is an intersection graph.

Mu e ? EG u ? e
9
Intersection Graphs
  • Every graph is an intersection graph.

Mu e ? EG u ? e
uv ? EG ? Mu ? Mv ? ?
10
Intersection Graphs
  • Every graph is an intersection graph
  • Restricting the sets

11
Intersection Graphs
  • Every graph is an intersection graph
  • Restricting the sets by geometrical shape
  • Motivation and applications in scheduling,
    biology, VLSI designs

12
Intersection Graphs
  • Every graph is an intersection graph
  • Restricting the sets by geometrical shape
  • Motivation and applications in scheduling,
    biology, VLSI designs
  • Nice characterizations, interesting theoretical
    properties, challenging open problems

13
Few Examples
14
Few Examples
  • Interval graphs -
  • Gilmore, Hoffman 1964
  • Fulkerson, Gross 1965
  • Booth, Lueker 1975
  • Trotter, Harary 1979

15
Few Examples
  • Interval graphs -
  • - neat characterization
  • chordal co-comparability
  • - recognizble in linear time
  • - most optimization
  • problems solvable in polynomial time
  • - perfect

16
Few Examples
  • SEG graphs -
  • Ehrlich, Even, Tarjan 1976
  • Scheinerman
  • Erdös, Gyarfás 1987
  • JK, Neetril 1990
  • JK, Matouek 1994
  • Thomassen 2002

17
Few Examples
  • SEG graphs -
  • - recognition NP-hard and
  • in PSPACE,
  • NP-membership open
  • - coloring, independent
  • set NP-hard, complexity of CLIQUE open
  • - near-perfectness open

18
Near-perfect graph classes
  • A graph class G is near-perfect if there exists
    a function f such that
  • ?(G) ? f(?(G))
  • for every G ? G.

19
Few Examples
  • String graphs -
  • Sinden 1966
  • Ehrlich, Even, Tarjan 1976
  • JK 1991
  • JK, Matouek 1991
  • Pach, Tóth 2001
  • tefankovic, Schaffer 2001, 2002

20
Few Examples
  • CONV graphs -
  • Ogden, Roberts 1970
  • JK, Matouek 1994
  • Agarwal, Mustafa 2004
  • Kim, Kostochka,
  • Nakprasit 2004

21
Few Examples
  • PC graphs -
  • Fellows 1988
  • Koebe 1990
  • JK, Kostochka 1994
  • Spinrad
  • JK, Pergel 2002
  • Pergel 2007

22
Few Examples
  • Circle graphs -
  • De Fraysseix 1984
  • Bouchet 1985
  • Gyarfas 1987
  • Unger 1988
  • Kloks 1993
  • Kostochka 1994

23
Few Examples
  • Circle graphs -
  • - recognizable in linear
  • time
  • - coloring NP-hard
  • - independent set, clique
  • solvable in polynomial time
  • - near-perfect ? log ? ? ? ? O(2?)
  • - close bounds open

24
Few Examples
  • Circular Arc graphs -
  • Tucker 1971, 1980
  • Gavril 1974
  • Gyarfás 1987
  • Spinrad 1988
  • Hell, Bang-Jensen, Huang 1990

25
Few Examples
  • Circular Arc graphs -
  • Tucker 1971, 1980
  • Gavril 1974
  • Gyarfás 1987
  • Spinrad 1988
  • Hell, Bang-Jensen, Huang 1990

26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
Outline
  • String graphs
  • CONV and PC graphs
  • Representations of planar graphs

30
1. String graphs
  • Sinden 1966

31
1. String graphs
  • Sinden 1966 IG(regions)

32
1. String graphs
  • Sinden 1966 IG(regions)
  • Graham 1974

33
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982

34
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • Thomas 1988
  • IG(topologically con)
  • all graphs,
  • String IG(arc-connected sets)

35
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • Thomas 1988
  • JK 1991 NP-hard

36
1. String graphs
STRING
SEG
CONV
37
1. String graphs
STRING
SEG
CONV
38
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • Thomas 1988
  • JK 1991 NP-hard
  • Recognition in NP?

39
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • Thomas 1988
  • JK 1991 NP-hard
  • Recognition in NP?

40
Abstract Topological Graphs
  • G (V,E), R ? ef e,f ? E is realizable if
    G has a drawing D in the plane such that for
    every two edges e,f ? E,
  • De ? Df ? ? ? ef ? R
  • G (V,E), R ? is realizable iff G is planar

41
Worst case functions
  • Str(n) min k s.t. every string graph on n
    vertices has a representation with at most k
    crossing points of the curves
  • At(n) min k s.t. every AT graph with n edges
    has a realization with at most k crossing points
    of the edges
  • Lemma Str(n) and At(n) are polynomially
    equivalent

42
String graphs requiring large representations
  • Thm (J.K., Matouek 1991)
  • At(n) ? 2cn

43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • Thomas 1988
  • JK 1991 NP-hard
  • Recognition in NP?
  • Are they recognizable at all?

48
Thm (Pach, Tóth 2001) At(n)
? nn Thm (Schaefer, tefankovic 2001)
At(n) ? n2n-2
49
1. String graphs
  • Sinden 1966
  • JK, Goljan, Kucera 1982
  • JK 1991 NP-hard
  • Schaefer, Sedgwick,
  • tefankovic 2002
  • String graph recognition is in NP (Lempel-Ziv
    compression)

50
1. Some subclasses
51
1. Some subclasses
52
1. Some subclasses
  • Complements of
  • Comparability graphs
  • (Golumbic 1977)

53
Co-comparability graphs
54
Co-comparability graphs
55
Co-comparability graphs
? ?
56
Co-comparability graphs
57
Co-comparability graphs
58
1. Some subclasses
  • Zwischenring graphs
  • NP-hard
  • (Middendorf, Pfeiffer)

59
1. Some subclasses
  • Outerstring graphs
  • NP-hard
  • (Middendorf, Pfeiffer)

60
1. Some subclasses
  • Outerstring graphs
  • NP-hard
  • (Middendorf, Pfeiffer)

61
1. Some subclasses
  • Interval filament graphs
  • (Gavril 2000)
  • CLIQUE and IND SET
  • can be solved in
  • polynomial time

62
2. CONV and PC
  • JK, Matouek 1994
  • recognition in PSPACE

63
Thm Recognition of CONV graphs is in PSPACE
  • Reduction to solvability of polynomial
    inequalities in R
  • ? x1, x2, x3 xn ? R s.t.
  • P1(x1, x2, x3 xn) gt 0
  • P2(x1, x2, x3 xn) gt 0
  • Pm(x1, x2, x3 xn) gt 0 ?

64
Mv
Mw
Mu
Mz
Mu, u ? VG uv ? EG ? Mu
? Mv ? ?
65
Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Choose Xuv ? Mu ? Mv for every uv ? EG
66
Mv
Xuv
Xuw
Mw
Mu
Xuz
Mz
Replace Mu by Cu conv(Xuv v s.t. uv ? EG) ?
Mu
Cu ? Cv ? ? ? Mu ? Mv ? ? ? uv
? EG
67
Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
68
Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
69
Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
70
Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Cu
auwx buwy cuw 0
71
Introduce variables xuv , yuv ? R s.t. Xuv
xuv , yuv for uv ? EG
uv ? EG ? Cu ? Cv ? ?
guaranteed by the choice Cu conv(Xuv v s.t.
uv ? EG)
uw ? EG ? Cu ? Cw ?
separating lines
Cw
Xwz
Cu
Xuv
auwx buwy cuw 0
Representation is described by inequalities
(auwxuv buwyuv cuw) (auwxwz buwywz cuw) lt
0 for all u,v,w,z s.t.
uv, wz ? EG and uw ? EG
72
2. Recognition NP-membership
  • Guess and verify

73
2. Recognition NP-membership
  • Guess and verify
  • INT, CA, CIR, PC, Co-Comparability
  • IFA mixing characterization
  • - CONV, SEG ?
  • !! String Lempel-Ziv compression

74
2. Recognition NP-membership
  • Thm (JK, Matouek 1994) For every n there is a
    graph Gn ? SEG with O(n2) vertices s.t. every SEG
    representation with integer endpoints has a
    coordinate of absolute value ? 22n.
  • Same for CONV (Pergel 2008).

75
2. CLIQUE in CONV graphs
  • CO-PLANAR ? CONV (JK, Kubena 99)

76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
(No Transcript)
82
2. CLIQUE in CONV graphs
  • CO-PLANAR ? CONV (JK, Kubena 99)
  • Corollary CLIQUE is NP-complete for CONV graphs.
    (Since INDEPENDENT SET is NP-complete for planar
    graphs.)
  • CLIQUE in SEG graphs still open (JK, Neetril
    1990)

83
2. CLIQUE in MAX-TOL graphs
84
2. MAX-TOLERANCE
(Golumbic, Trenk 2004)
85
2. MAX-TOLERANCE
S Iu u ? VG intervals, tu ? R
tolerances uv ? EG iff Iu ? Iv max tu,
tv

86
2. MAX-TOLERANCE
Theorem (Kaufmann, JK, Lehmann, Subramarian,
2006) Max-tolerance graphs are exactly
intersection graphs of homothetic triangles
(semisquares)

87
2. MAX-TOLERANCE
Tu
Tv
tu
Iu
Iv

88
  • Lemma (folklore) Disjoint convex polygons are
    separated by a line parallel to a side of one of
    them.

89
A
B
C
90
Maximal cliques
Q a maximal clique
91
Maximal cliques
Q a maximal clique
t
h
v
  • h highest basis of Q, v rightmost vertical side,
  • t lowest diagonal side

92
Maximal cliques
Q a maximal clique
t
h
v
  • Q(h,v,t) all triangles that intersect h,v and t

93
  • Claim Q(h,v,t) Q

94
  • Claim Q(h,v,t) Q
  • Proof
  • 1) Q ? Q(h,v,t)

h
95
  • Claim Q(h,v,t) Q
  • Proof
  • 1) Q ? Q(h,v,t)
  • 2) Q(h,v,t) is a clique

96
  • Claim Q(h,v,t) Q
  • Proof
  • 1) Q ? Q(h,v,t)
  • 2) Q(h,v,t) is a clique
  • Suppose a,b?? Q(h,v,t) are disjoint, hence
    separated by a line parallel to one of the sides,
    say horizontal.

97
  • Claim Q(h,v,t) Q
  • Proof
  • 1) Q ? Q(h,v,t)
  • 2) Q(h,v,t) is a clique

a
b
98
  • Claim Q(h,v,t) Q
  • Proof
  • 1) Q ? Q(h,v,t)
  • 2) Q(h,v,t) is a clique
  • b cannot intersect h,
  • a contradiction

a
h
b
99
Maximal cliques
Q a maximal clique
t
h
v
  • Q(h,v,t) all triangles that intersect h,v and
    t
  • Hence G has O(n3) maximal cliques.

100
2. Polygon-circle graphs
  • PC graphs -
  • Fellows 1988
  • Koebe 1990
  • JK, Kostochka 1994
  • Spinrad
  • JK, Pergel 2002
  • Pergel 2007

101
2. Polygon-circle graphs
  • PC graphs -
  • Fellows 1988
  • Koebe 1990
  • JK, Kostochka 1994
  • Spinrad
  • JK, Pergel 2002
  • Pergel 2007

102
2. Polygon-circle graphs
  • PC graphs -
  • Fellows 1988
  • Koebe 1990
  • JK, Kostochka 1994
  • Spinrad
  • JK, Pergel 2002
  • Pergel 2007

103
2. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
104
2. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
105
2. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
Pergel 2007
106
2. Polygon-circle graphs
IFA
CA
CIR
PC
CHOR
Pergel 2007
107
2. Short cycles
  • Do short cycles help?

108
2. Short cycles
  • Do short cycles mind?
  • Does large
    girth help?

109
UNIT-DISK
DISK
110
UNIT-DISK
DISK
PSEUDO-DISK
111
2. Short cycles
  • Thm (J.K. 1996) Triangle-free intersection graphs
    of pseudodisks are planar.

112
2. Short cycles
  • Thm (J.K. 1996) Triangle-free intersection graphs
    of pseudodisks are planar.

113
2. Short cycles
  • Thm (J.K. 1996) Triangle-free intersection graphs
    of pseudodisks are planar.
  • Corollary Recognition of triangle-free
    PSEUDO-DISK and DISK graphs is polynomial.

114
Koebe (1936)
115
(No Transcript)
116
(No Transcript)
117
2. Short cycles
  • Thm (J.K. 1996) Triangle-free STRING graphs are
    NP-hard to recognize.

118
2. Short cycles
  • Thm (J.K. 1996) Triangle-free STRING graphs are
    NP-hard to recognize.
  • Thm (JK, Pergel 2007) PC graphs of girth ? 5 can
    be recognized in polynomial time.
  • Thm (JK, Pergel 2007) For each k, recognition of
    SEG graphs of girth ? k is NP-hard.

119
2. Short cycles
  • Problem Is recognition of String graphs of girth
    ? k NP-complete for every k ?
  • Thm (JK, Pergel 2007) PC graphs of girth ? 5 can
    be recognized in polynomial time.
  • Thm (JK, Pergel 2007) For each k, recognition of
    SEG graphs of girth ? k is NP-hard.

120
3. Representations of planar graphs
121
3. Representations of planar graphs
122
3. Representations of planar graphs
  • - Planar graphs are exactly contact graphs of
    disks (Koebe 1934)

123
3. Representations of planar graphs
  • Planar graphs are exactly contact graphs of disks
    (Koebe 1934)
  • PLANAR ? DISK
  • PLANAR ? CONV
  • PLANAR ? 2-STRING

124
(No Transcript)
125
(No Transcript)
126
(No Transcript)
127
3. Representations of planar graphs
  • PLANAR ? 2-STRING
  • Problem (Fellows 1988) Planar ? 1-STRING ?
  • True Chalopin, Gonçalves, and Ochem
  • SODA 2007

128
3. Representations of planar graphs
  • PLANAR ? 2-STRING
  • Problem (Fellows 1988) Planar ? 1-STRING ?
  • True Chalopin, Gonçalves, and Ochem
  • SODA 2007
  • - Problem PLANAR ? SEG? (Pollack, Scheinerman,
    West, )

129
3. Representations of planar graphs
  • PLANAR ? SEG (?)
  • 3-colorable 4-connected triangulations are
    intersection graphs of segments (de Fraysseix, de
    Mendez 1997)
  • Planar triangle-free graphs are in SEG (Noy et
    al. 1999)
  • Planar bipartite graphs are grid intersection
    (Hartman et al. 91 Albertson de Fraysseix et
    al.)

130
3. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
f
e
3
5
e
d
d
c
6
7
2
c
1
4
b
b
a
a
1
2
3
4
5
6
7
131
3. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
e
d
c
b
a
1
2
3
4
5
6
7
132
3. Bipartite planar graphs
De Fraysseix, Ossona de Mendez, Pach
f
e
d
c
b
a
1
2
3
4
5
6
7
133
3. Representations of planar graphs
  • PLANAR ? CONV
  • Planar graphs are contact graphs of triangles (de
    Fraysseix, Ossona de Mendez 1997)

134
(No Transcript)
135
3. Representations of planar graphs
  • PLANAR ? CONV
  • Planar graphs are contact graphs of triangles (de
    Fraysseix, Ossona de Mendez 1997)
  • Are planar graphs contact graphs of homothetic
    triangles?

136
3. Representations of planar graphs
  • PLANAR ? CONV
  • Planar graphs are contact graphs of triangles (de
    Fraysseix, Ossona de Mendez 1997)
  • Are planar graphs contact graphs of homothetic
    triangles?
  • No

137
3. Representations of planar graphs
2
1
b
a
c
3
138
3. Representations of planar graphs
2
1
  • 1

b
a
a
b
c
c
3
2
3
139
3. Representations of planar graphs
2
1
  • 1

b
a
a
b
c
c
3
2
3
140
3. Planar open problems
  • PLANAR ? MAX-TOL? (Lehmann)
  • (i.e. are planar graphs intersection graphs
    of homothetic triangles?)

141
3. Planar open problems
  • PLANAR ? MAX-TOL? (Lehmann)
  • Conjecture (Felsner, JK 2007) Planar
  • 4-connected triangulations are contact
    graphs of homothetic triangles.

142
3. Planar open problems
  • PLANAR ? MAX-TOL? (Lehmann)
  • Conjecture (Felsner, JK 2007) Planar
  • 4-connected triangulations are contact
    graphs of homothetic triangles.
  • This would imply that planar graphs are
    intersection graphs of homothetic triangles.

143
3. Representations of planar graphs
2
1
b
a
c
3
144
3. Representations of planar graphs
2
1
b
a
a
b
c
c
3
145
3. Representations of planar graphs
2
1
b
a
a
b
c
c
3
146
4. Invitation
  • Graph Drawing, Crete, Sept 21 24, 2008
  • Prague MCW, July 28 Aug 1, 2008

147
HAPPY BIRTHDAY Tom !
Write a Comment
User Comments (0)
About PowerShow.com