Topic 5 Biogeochemical Cycling and Water Quality - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Topic 5 Biogeochemical Cycling and Water Quality

Description:

Valett et al 2002. Binkley et al 1999. Lowrance et al 1997. Wigington et al 2005 ... Translocation from senescent to active portions of tree ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 42
Provided by: scho96
Category:

less

Transcript and Presenter's Notes

Title: Topic 5 Biogeochemical Cycling and Water Quality


1
Topic 5 Biogeochemical Cycling and Water Quality
  • Overview
  • Geochemical Nutrient Cycling
  • Biological Nutrient Cycling
  • Major Biogeochemical Cycles
  • Forest Management, Biogeochemistry, and Water
    Quality

2
Reading so far
  • Valett et al 2002
  • Binkley et al 1999
  • Lowrance et al 1997
  • Wigington et al 2005
  • Willard et al 2005
  • Grace 2005

Appalachian Hardwoods
3
I. Overview
  • Ebermayer 1876 Bavarian Forests
  • Litterfall and nutrient return
  • Understanding ecosystem function depends on
    understanding flow of elements
  • Water as bloodstream of ecosystem

N
4
  • Two major components of biogeochemical cycles
  • External geochemical cycles
  • Import/export of nutrients across
    ecosystem/catchment boundaries
  • Internal biological cycles
  • Exchange of nutrients within plant-soil system

Abundant Downed Wood
5
II. Geochemical Cycling
  • Inputs
  • Atmospheric (wet, dry)
  • NO, N2O to NO3 via lightning
  • Air pollution (NO, NO2, N2O) 5-30 kgha-1yr-1
  • Biological N fixation
  • Nonsymbiotic
  • Symbiotic
  • Weathering of parent rock (P cations)
  • lossweathering - (atm input accum in veg/soil)
  • Fertilizer
  • Can accelerate cycling

6
Nutrient Inputs
7
Nutrient Outputs
  • Leaching and surface runoff
  • Dissolved, colloidal, suspended
  • Harvesting
  • 5-10 kg/ha/yr N, Ca, K equiv. loss (taken at
    once)
  • 1 kg/ha/yr P, Mg equiv. loss
  • Soil disturbance accelerates decomposition
  • Potential leaching/runoff loss
  • Immobilization via microbes, clay
  • Importance of tree uptake

8
Nutrient Mobility in Soil
  • Mobile
  • NO3-, S, Na, Cl, B
  • Immobile
  • K, Ca, Mg, NH4
  • Very Immobile
  • P, Mo, Mn, Fe, Cu, Zn

9
  • Volatile Losses
  • N loss
  • Ammonia volatilization at high pH
  • buthigh pH increases N mineralization
  • Denitrification
  • Fire (20-80 kg/ha prescribed burn)

Greater losses with wildfires
10
Nutrient Balance
  • Lossesweathering inputs
  • Nutrient pools increase as succession progresses
    (ecosystem develops)
  • Nutrient pools equilibrate with maturing
    ecosystem
  • Nutrient pools altered by harvesting, fire,
    fertilization-creates potential for imbalance

11
III. Biological Nutrient Cycling
  • Nutrient transfer forest floor, plant, animal
    communities
  • Nutrient transfer within tree

12
Nutrient Uptake
  • Most nutrients returned to forest floor annually
    or translocated within tree
  • Relatively small amount retained each year in
    biomass accretion
  • Factors
  • Soil type
  • Stage of stand development
  • Earlyincreasing uptake
  • Canopy closureconstant uptake

13
Nutrient Retention
  • Net Annual Nutrient Retention
  • Total Annual Uptake-Total Annual Returned to Soil
    (dead roots, litterfall, leaching)

14
Nutrient Retention
  • Increases with increasing biomass
  • Successional process
  • Initial nutrient transfer from mineral soil
  • Early growthretention in foliage
  • Increasing retention in increasing biomass
  • Late growthretention in wood
  • Increasing retention in dead organic matter

15
Nutrient Retention
  • Management factors
  • Species selection
  • Loblolly-peak foliage retentionage 15
  • Doug-fir-peak foliage retentionage 70-80
  • Fertilization
  • Density management/thinning

16
Nutrient Returns
  • Most of uptake becomes litterfall, canopy wash
    (throughfallstemflow)
  • Larger litter returnshorter residence time in
    forest floor (higher decomp, k)
  • Accumulation of nutrients in forest floor with
    stand age

17
Internal Transfers
  • Seasonal variation of nutrient composition of
    plant parts
  • Translocation from senescent to active portions
    of tree
  • Nutrient budgetsdiagnostic of ecosystem status

18
Internal Transfers-Mobility in Plant
  • Mobile
  • N, P, K, Na, Mg, Cl, (S)
  • Immobile
  • Fe, Mn, Zn, Cu, Mo
  • Very Immobile
  • Ca, B

19
IV. Major Biogeochemical Cycles
  • Carbon
  • Nitrogen
  • Phosphorus
  • Potassium, Calcium, Magnesium

20
Carbon
Fixation via photosynthesis
Atm POOL
Biomass POOL
Respiration
Respiration
Decomposition
Soil POOL
21
Carbon turnover (decomp)
  • C turnover 2-100 yrs
  • Exponential decay
  • C chemistry (quality)
  • 50,000 kg C5,000 kg N (CN 101)
  • k.01 50 kg N released/yr
  • k.02 100 kg N released/yr

22
Carbon leaching
CO2 dissolves in H2O CO2 H2O -gt H2CO3
Carbonic Acid H2CO3 dissociates H2CO3 -gt
HCO3- H
replaces leached cations soil weathering lowers
pH
bicarbonate
23
Foresters and Carbon
  • Manipulate C cycle for tree growth
  • Accumulate C in wood and fiber pools
  • Uptake of C via photosynthesis responsive to
    nutrient water additions
  • Each N atom in foliage can yield 50-100 C atoms
    fixed by photosynthesis/yr
  • 500-1000 kg H2O to fix 1 kg C

24
Nitrogen
Fixation
Volatilization
Uptake
Denitrification
Leaching
Min/Immob
25
Nitrogen
  • Most often limiting nutrient
  • Symbiotic N fixation plant provides energy via
    carbos. N2 reduced to NH3 (proteins)
  • N2 8H 8e- -gt 2NH3 H2
  • NH3 organic acids -gt amino acids-gtproteins

26
N Mineralization/Immobilization
organic N
inorganic N
Mineralization
Nitrosomonas
Nitrobacter
  • R-NH2 lt-gt R-OH NH4 lt-gt NO2- 4H lt-gt NO3-

/- 2H2O
/- O2
/- ½ O2
Immobilization
27
Denitrification (NO3 reduction)
-2O
-2O
-O
-O
2NO3- -gt 2NO2- -gt 2NO -gt N2O -gt N2
nitrate
nitrite
nitric oxide
nitrous oxide
dinitrogen gas
  • Conditions
  • NO3
  • Anaerobic
  • Carbon source
  • Warm

28
Phosphorus
Uptake
Mycorrhizae
Dissolution
Dissolution
Fixation
Organic POOL
Soluble POOL
Mineralization
29
Forms of phosphate
  • PO43-
  • HPO42-
  • H2PO4- (most common)
  • Depends on soil pH

30
P form depends on pH
31
More on P
  • P losses minimal
  • P inputs minimal (.1-.5 kg P/ha/yr)
  • No gaseous or leaching losses
  • Loss associated w erosion

32
K, Ca, Mg
  • Atm weathering inputs
  • 1-30 kg/ha/yr
  • Transformation
  • Mineral weathering litter decomp release K
    Ca2 Mg2
  • Loss via leaching

33
V. Forest Mgt, Biogeochemistry, Water Quality
  • Binkley Brown 1993 gt40 studies
  • PO4 few problems (fire)
  • NO3-N 70 studies lt.5 mg/L
  • 45 mg NO3/L 10 mg NO3-N/L

34
Forest Harvesting vs NO3-N
Hubbard Brook
Coweeta
Binkley Brown 1993
35
Forest fertilization vs peak NO3-N
Binkley Brown 1993
36
Fertilizer vs. Stream NO3-N
Binkley et al. 1999
37
Fertilizer vs. soil solution NO3-N
Binkley et al. 1999
38
Shepard (1994)
  • 9 wetland studies
  • Harvesting, site prep, bedding, planting,
    drainage, fertilization
  • Drainage SC hdwd increased NO3
  • Drainage no effect UP MI
  • NC bedding, fert, drainage, thinning fert
    increased N P

39
Weekly solute in drainage6-yr-old loblolly
fertilized
Shepard 1994
40
Streamwater quality following harvesting, site
prep, reforestation w slash pine in FL.
Shepard 1994
41
Context for effect?
Disturbance
Improved
Unchanged
Soil or Water Quality Indicator
Recovered
Degraded
Time
Write a Comment
User Comments (0)
About PowerShow.com