Title: Support Vector Machines Classification Venables
1Support Vector MachinesClassificationVenables
Ripley Section 12.5CSU Hayward Statistics 6601
- Joseph Rickert
-
- Timothy McKusick
- December 1, 2004
2Support Vector Machine
- What is the SVM?
- The SVM is a
- generalization of the
- Optimal Hyperplane Algorithm
- Why is the SVM important?
- It allows the use of more similarity measures
than the OHA - Through the use of kernel methods it works with
non vector data
3Simple Linear Classifier
- XRp
- f(x) wTx b
- Each x ? X is classified into 2
- classes labeled y ? 1,-1
- y 1 if f(x) ? 0 and
- y -1 if f(x) lt 0
- S (x1,y1),(x2,y2),...
- Given S, the problem is to learn f (find w and b)
. - For each f check to see if all (xi,yi) are
correctly classified i.e. yif(xi) ? 0 - Choose f so that the number of errors is minimized
4But what if the training set is not linearly
separable?
- f(x) wTx b defines two half planes xf(x) ?
1 and x f(x) ? -1 - Classify with the Hinge loss
- function c(f,x,y) max(0,1-yf(x))
- c (f,x,y) ? as distance from correct half plane ?
- If (x,y) is correctly classified with large
confidence then c(f,x,y) 0
wTxb gt 1
yf(x) ? 1 correct with large conf 0 ? yf(x) lt
0 correct with small conf yf(x) lt 0
misclassified
wTxb lt - 1
yf(x)
margin 2/w
1
5SVMs combine requirements of large margin and few
misclassificationsby solving the problem
- New formulation
- min 1/2w2 C?c(f,xi,yi) w.r.t w,x and b
- C is parameter that controls tradeoff between
margin and misclassification - Large C ? small margins but more samples
correctly classified with strong confidence - Technical difficulty hinge loss function
c(f,xi,yi) is not differentiable
- Even better formulation use slack
variables xi - min 1/2w2 C?xi w.r.t w,x and b
- under the constraint xi ?
c(f,xi,yi) () - But () is equivalent to
- xi ? 0
- xi - 1 yi(wTxi b) ? 0
- Solve this quadratic optimization problem with
Lagrange Multipliers
for i 1...n
6Support Vectors
- Lagrange Multiplier formulation
- Find a that minimizes W(a)(-1/2)
??yiyjaiajxiTxj ?ai - under the constraints ?ai 0 and 0 ? ai
? C - The points with positive Lagrange Multipliers,ai
gt 0, are called Support Vectors - The set of support vectors contains all the
information used by the SVM to learn a
discrimination function
a 0
a C
0 lt a lt C
7Kernel Methods data not represented
individually, but only through a set of pairwise
comparisons
X a set of objects(proteins)
F(s) (aatcgagtcac, atggacgtct, tgcactact)
Each object represented by a sequence
S
1 0.5 0.3 0.5 1 0.6 0.3 0.6 1
K
Each number in the kernel matrix is a measure of
the similarity or distance between two objects.
8Kernels
- Properties of Kernels
- Kernels are measures of similarity K(x,x) large
when x and x are similar - Kernels must be
- Positive definite
- Symmetric
- ? kernel K, ? a Hilbert Space F and a mapping
F X ? F ? K(x,x) ltF(x),F(x)gt ? x,x ?
X - Hence all kernels can be thought of as dot
products in some feature space
- Advantages of Kernels
- Data of very different nature can be analyzed in
a unified framework - No matter what the objects are, n objects are
always represented by an n x n matrix - Many times, it is easier to compare objects than
represent them numerically - Complete modularity between function to represent
data and algorithm to analyze data
9The Kernel Trick
- Any algorithm for vector data that can be
expressed in terms of dot products can be
performed implicitly in the feature space
associated with the kernel by replacing each dot
product with the kernel representation - e.g. For some feature space F let
- d(x,x) F(x) -
F(x) - But
- F(x)-F(x)2 ltF(x),F(x)gt
ltF(x),F(x)gt - 2ltF(x),F(x)gt - So
- d(x,x) (K(x,x)K(x,x)-2K(x,x))1/2
10Nonlinear Separation
- Nonlinear kernel
- X is a vector space
- the kernel F is nonlinear
- linear separation in the feature space F can be
associated with non linear separation in X
F
X
F
11SVM with Kernel
- Final formulation
- Find a that minimizes W(a)(-1/2)??yiyjaiajxiTxj
?ai - under the constraints ?ai 0 and 0 ? ai ? C
- Find an index i, 0 lt ai lt C and set
- b yi - ?yjajk(xixj)
- The classification of a new object x ? X is then
determined by the sign of the function - f(x) ?yiaik(xix) b
12iris data set (Anderson 1935) 150 cases, 50 each
of 3 species of iris Example from page 48 of
The e1071 Package.
- First 10 lines of Iris
- gt iris
- Sepal.Length Sepal.Width Petal.Length
Petal.Width Species - 1 5.1 3.5 1.4
0.2 setosa - 2 4.9 3.0 1.4
0.2 setosa - 3 4.7 3.2 1.3
0.2 setosa - 4 4.6 3.1 1.5
0.2 setosa - 5 5.0 3.6 1.4
0.2 setosa - 6 5.4 3.9 1.7
0.4 setosa - 7 4.6 3.4 1.4
0.3 setosa - 8 5.0 3.4 1.5
0.2 setosa - 9 4.4 2.9 1.4
0.2 setosa - 10 4.9 3.1 1.5
0.1 setosa
13SVM ANALYSIS OF IRIS DATA
- SVM ANALYSIS OF IRIS DATA SET
- classification mode
- default with factor response
- model lt- svm(Species ., data iris)
- summary(model)
- Call
- svm(formula Species ., data iris)
- Parameters
- SVM-Type C-classification
- SVM-Kernel radial
- cost 1
- gamma 0.25
- Number of Support Vectors 51
- ( 8 22 21 )
- Number of Classes 3
- Levels
- setosa versicolor virginica
Parameter C in Lagrange Formulation
Radial Kernel exp(-gu - v)2
14Exploring the SVM Model
- test with training data
- x lt- subset(iris, select -Species)
- y lt- Species
- pred lt- predict(model, x)
- Check accuracy
- table(pred, y)
- compute decision values
- pred lt- predict(model, x, decision.values TRUE)
- attr(pred, "decision.values")14,
- y
- pred setosa versicolor virginica
- setosa 50 0 0
- versicolor 0 48 2
- virginica 0 2 48
- setosa/versicolor setosa/virginica
versicolor/virginica - 1, 1.196000 1.091667 0.6706543
- 2, 1.064868 1.055877 0.8482041
- 3, 1.181229 1.074370 0.6438237
- 4, 1.111282 1.052820 0.6780645
15Visualize classes with MDS
- visualize (classes by color, SV by crosses)
- plot(cmdscale(dist(iris,-5)),
- col as.integer(iris,5),
- ch c("o","")1150 in modelindex 1)
cmdscale multidimensional scaling or
principal coordinates analysis
black sertosa red versicolor green virginica
16iris split into training and test sets first 25
of each case training set
- Call
- svm(formula fS.TR ., data iris.train)
- Parameters
- SVM-Type C-classification
- SVM-Kernel radial
- cost 1
- gamma 0.25
- Number of Support Vectors 32
- ( 7 13 12 )
- Number of Classes 3
- Levels
- setosa veriscolor virginica
- SECOND SVM ANALYSIS OF IRIS DATA SET
- classification mode
- default with factor response
- Train with iris.train.data
- model.2 lt- svm(fS.TR ., data iris.train)
- output from summary
- summary(model.2)
17iris test results
- test with iris.test.data
- x.2 lt- subset(iris.test, select -fS.TE)
- y.2 lt- fS.TE
- pred.2 lt- predict(model.2, x.2)
- Check accuracy
- table(pred.2, y.2)
- compute decision values and probabilities
- pred.2 lt- predict(model.2, x.2, decision.values
TRUE) - attr(pred.2, "decision.values")14,
- y.2
- pred.2 setosa veriscolor virginica
- setosa 25 0 0
- veriscolor 0 25 0
- virginica 0 0 25
- setosa/veriscolor setosa/virginica
veriscolor/virginica - 1, 1.253378 1.086341 0.6065033
- 2, 1.000251 1.021445 0.8012664
- 3, 1.247326 1.104700 0.6068924
- 4, 1.164226 1.078913 0.6311566
18iris training and test sets
19Microarray Data from Golub et al. Molecular
Classification of Cancer Class Prediction by
Gene Expression Monitoring, Science, Vol 286,
10/15/1999
- Expression levels of predictive genes .
- Rows genes
- Columns samples
- Expression levels (EL) of each gene are relative
to the mean EL for that gene in the initial
dataset - Red if EL gt mean
- Blue if EL lt mean
- The scale indicates s above or below the mean
- Top panel genes highly expressed in ALL
- Bottom panel genes more highly expressed in AML.
20Microarray Data Transposedrows samples,
columns genes
- Microarray Data Transposedrows samples,
columns genes - ,1 ,2 ,3 ,4 ,5,6 ,7
,8 ,9 ,10 - 1, -214 -153 -58 88 -295 -558 199 -176
252 206 - 2, -139 -73 -1 283 -264 -400 -330 -168
101 74 - 3, -76 -49 -307 309 -376 -650 33 -367
206 -215 - 4, -135 -114 265 12 -419 -585 158 -253
49 31 - 5, -106 -125 -76 168 -230 -284 4 -122
70 252 - 6, -138 -85 215 71 -272 -558 67 -186
87 193 - 7, -72 -144 238 55 -399 -551 131 -179
126 -20 - 8, -413 -260 7 -2 -541 -790 -275 -463
70 -169 - 9, 5 -127 106 268 -210 -535 0 -174
24 506 - 10, -88 -105 42 219 -178 -246 328 -148
177 183 - 11, -165 -155 -71 82 -163 -430 100 -109
56 350 - 12, -67 -93 84 25 -179 -323 -135 -127
-2 -66 - 13, -92 -119 -31 173 -233 -227 -49 -62
13 230 - 14, -113 -147 -118 243 -127 -398 -249 -228
-37 113 - 15, -107 -72 -126 149 -205 -284 -166 -185
1 -23
- Training Data
- 38 Samples
- 7129 x 38 matrix
- ALL 27
- AML 11
- Test Data
- 38 Samples
- 7129 x 34 matrix
- ALL 20
- AML 14
21SVM ANALYSIS OF MICROARRAY DATAclassification
mode
- default with factor response
- y lt-c(rep(0,27),rep(1,11))
- fy lt-factor(y,levels01)
- levels(fy) lt-c("ALL","AML")
- compute svm on first 3000 genes only because of
memory overflow problems - model.ma lt- svm(fy .,data fmat.train,13000)
- Call
- svm(formula fy ., data fmat.train,
13000) - Parameters
- SVM-Type C-classification
- SVM-Kernel radial
- cost 1
- gamma 0.0003333333
- Number of Support Vectors 37
- ( 26 11 )
- Number of Classes 2
- Levels
- ALL AML
22Visualize Microarray Training Data with
Multidimensional Scaling
- visualize Training Data
- (classes by color, SV by crosses)
- multidimensional scaling
- pc lt- cmdscale(dist(fmat.train,13000))
- plot(pc,
- col as.integer(fy),
- pch c("o","")13000 in model.maindex 1,
- main"Training Data ALL 'Black' and AML 'Red'
Classes")
23Check Model with Training DataPredict outcomes
of Test Data
- check the training data
- x lt- fmat.train,13000
- pred.train lt- predict(model.ma, x)
- check accuracy
- table(pred.train, fy)
- classify the test data
- y2 lt-c(rep(0,20),rep(1,14))
- fy2 lt-factor(y2,levels01)
- levels(fy2) lt-c("ALL","AML")
- x2 lt- fmat.test,13000
- pred lt- predict(model.ma, x2)
- check accuracy
- table(pred, fy2)
- fy
- pred.train ALL AML
- ALL 27 0
- AML 0 11
- fy2
- pred ALL AML
- ALL 20 13
- AML 0 1
Training data correctly classified
Model is worthless so far
24Conclusion
- The SVM appears to be a powerful classifier
applicable to many different kinds of data - But
- Kernel design is a full time job
- Selecting model parameters is far from obvious
- The math is formidable