Phase 2 doseresponse design: optimal doses - PowerPoint PPT Presentation

1 / 59
About This Presentation
Title:

Phase 2 doseresponse design: optimal doses

Description:

4 parameter problem (EMAX, EDI, n (sigmoid) & ASSY) Example Dose-response study ... we have at higher doses (Emax & sigmoid) Why not use available software? ... – PowerPoint PPT presentation

Number of Views:292
Avg rating:3.0/5.0
Slides: 60
Provided by: johns165
Category:

less

Transcript and Presenter's Notes

Title: Phase 2 doseresponse design: optimal doses


1
Phase 2 dose-response design optimal doses
sample-size selection
Patrick Johnson, Pfizer Global Research
Development, UK Acknowledgement Virginie
Herben, Thomas Kerbusch, Jacqui Spanton Byron
Jones (Pfizer) Jakob Ribbing (Uppsala
University, Sweden)
2
Agenda
  • Overview purpose
  • Dose-response study problem
  • Dose selection
  • Best Model
  • Partial derivatives
  • Simulation for information
  • OTD warning
  • Sample size
  • Trial simulation
  • Conclusion

3
Overview
  • After POC/POM main aim of Phase 2 to characterise
    dose-response
  • FDA
  • 10 years ago Have you got the correct dose?
  • Now Whats the dose-response?
  • Important design features of dose-response
    studies
  • Dose selection
  • Sample size

4
Overview
  • Dose selection
  • How many?
  • Which doses?
  • How do you determine sample size?
  • Most dose-response studies include formal
    (pair-wise) comparison
  • Efficient pair-wise ? efficient dose-response

5
Overview
  • Post POC usual to have dose-response model based
    on current knowledge (quantified best guess)
  • Optimal design theory could aid in
    dose-selection 
  • Sample size subsequently selected using
    simulation (/or ODT)

6
Purpose
  • Describe efficient process of selecting dose(s)
    and sample size using optimal design theory and
    simulation in example dose-response study
  • Example in spirit with a current project
  • Simplified for illustration
  • Splus (code last slide)

7
Dose-response problem
8
Background
  • Example (any indication)
  • Endpoint change from baseline ()
  • No placebo effect

9
Background
  • Phase 2a 10, 25 50 mg

10
X
X
X
11
Background
  • Phase 2a 10, 25 50 mg
  • Drug is efficacious and safe
  • Not fully characterised dose-response
  • Lower dose may give similar effect and less/no
    AEs

12
Aim
  • Design study that, in combination with P2a data,
    fully characterises dose-response
  • Questions
  • Dose selection?
  • Sample size (no pair-wise comparisons)?

13
Dose-selection
14
Dose-selection strategy
  • Dose-response model based on P2a data
  • Using best model, apply optimal design theory
    to select lower doses that will augment P2a data
    and fully characterise dose-response

15
Assumptions
  • Model parameter estimate are correct
  • Unlikely to be true
  • Model based on current knowledge so best guess
  • Better than gut feeling

16
Dose-response best model
X
X
X
17
Sigmoid Emax model
  • As Emax model with additional parameter (n)
  • Modifies steepness of response

18
Sigmoid Emax model
n5
n2
n1
n0.5
Symmetrical about ED50
19
Richards model
  • As Sigmoid Emax with additional parameter
  • Incorporates possible asymmetry (ASSY)
  • Nesting
  • If ASSY1, Sigmoid Emax
  • If ASSY1 n1, Emax

20
Richards model
21
Example Dose-response study
4 parameter problem (EMAX, EDI, n
(sigmoid) ASSY)
22
Dose-selection problem
  • Need to select 2 new doses
  • What are the optimal 2 doses that maximise
    information collected (parameter estimates)?

23
Wheres the information?
ASSY? n (sigmoid)?
24
Look at partial derivatives
Splus deriv()
25
Partial derivatives (Emax)
26
Partial derivatives (EDI)
27
Partial derivatives (n)
28
Partial derivatives (ASSY)
29
Maybe use partial derivative peaks?
At peaks youre collecting information on other
parameters
30
Mathematical compromise?
31
Partial derivatives
  • Doses at PD peaks probably not too far off
  • Need to incorporate
  • Mathematical compromise parameter covariance
  • P2a information we have at higher doses (Emax
    sigmoid)

32
Why not use available software?
  • Good optimal design software available (e.g.
    PFIM, POPT, OPTDES)
  • Specify model design characteristics
  • Optimal dose-selection solution
  • No account for previous data at higher doses
  • Get the question correct
  • What are the 2 optimal doses that when added to
    data already collected will best characterise the
    dose-response?
  • Simulation for information

33
Simulation framework
  • Richards model
  • Incorporate previous P2a data
  • Constrained by 2 additional doses
  • Construct grid of possible dosing permutations
  • Simulate for each dosing permutation
  • Combine simulated data with previous data and
    calculate information collected
  • Select dosing permutation with most information

34
Simulation
  • Richards model

35
Richards model
EMAX 100 EDI 4 n (sigmoid) 2 ASSY 0.1
36
Simulation
  • Richards model
  • Realistic grid of dosing permutations

37
Realistic grid of dosing permutations
Constraints D1 0.5-9.5 mg, by 0.5 D2 0.5-9.5
mg, by 0.5 Removed duplications Used
expand.grid()
38
Example dosing permutations
171 dosing permutations
39
Simulation
  • Need a model
  • Realistic grid of dosing permutations
  • For each dosing permutation

40
For example
41
Simulation
  • Need a model
  • Realistic grid of dosing permutations
  • For each dosing permutation
  • Add previous P2a doses

42
For example
43
Simulation
  • Need a model
  • Realistic grid of dosing permutations
  • For each dosing permutation
  • Add previous doses
  • Calculate derivative for each parameter at each
    dose (J)

44
For example
ASSY
n
EMAX
EDI
1.0
2.0
J
10.0
25.0
50.0
45
Simulation
  • Need a model
  • Realistic grid of dosing permutations
  • For each dosing permutation
  • Add previous doses
  • Calculate derivative for each parameter at each
    dose (J)
  • Generate Fisher Information Matrix (FIM)
    (JwJT)

46
Simulation
  • Need a model
  • Realistic grid of dosing permutations
  • For each dosing permutation
  • Add previous doses
  • Calculate derivative for each parameter at each
    dose (J)
  • Generate Fisher Information Matrix (FIM)
    (JwJT)
  • Calculate information collected (detFIM)

47
Top 10
48
Dose selection
  • Select 2.5 4.0 mg as 2 new doses
  • Not exact solution (depends on resolution)
  • Other theoretical methods

49
OTD Warning
50
Assumption/constraints
  • A priori, need to specify
  • Model structure (Emax etc.,)
  • Parameter values
  • What, if I knew that I wouldnt need to do the
    experiment!
  • Well, estimated parameter values
  • Not unusual to have these after POC/P2a

51
Select sample size
52
Sample size
  • 2 new doses
  • Need to select justify sample size
  • No formal comparison (no NQuery)
  • Collecting information on dose-response
  • How much information?
  • Investigate using trial simulation

53
Trial simulation
  • For each potential sample size (e.g. 16, 24, 32,
    40 48 subjects)
  • Simulate 2 new doses from your model
  • Combine simulated data with existing data
  • Update model
  • Goal good PARAMETER ESTIMATION
  • For this example used EDI (measure of location,
    similar to ED50)

54
EDI expected-estimation error ()
55
Dose-response design solution
  • Dose selection
  • Optimal doses 2.5 4.0 mg (not exact)
  • May not be feasible
  • Can discriminate between possible dosing options
  • Sample size
  • Sample size of 32 subjects offers good estimation
    (in all parameters)
  • Additional subjects offer little benefit (point
    of diminishing returns)

56
Conclusion
  • For illustration used simplified example
  • Optimal theory allows more efficient resource
    allocation
  • Optimal theory can incorporate
  • Residual error model
  • Random effects
  • Sample size (w/o need for simulation)
  • Number of doses
  • Get benefit by going through the process (asking
    right questions)

57
Splus simulation code
  • APlot richards model
  • DOSElt-0100 EMAXlt-100 SLOPlt-2 ASSYlt-0.1
    EDIlt-4
  • RICHlt-EMAX/((1ASSYexp(SLOPlog(EDI/DOSE)))(1/A
    SSY))
  • plot(DOSE,RICH,type'l',ylimc(0,110),xlab'Dose',
    ylab'Change from baseline ()',lwd2)
  • Partial derivatives
  • pdlt-deriv((EMAX/((1ASSYexp(SLOPlog(EDI/DOSE)))
    (1/ASSY))),c("EMAX","ASSY","SLOP","EDI"),functio
    n(EMAX,ASSY,SLOP,EDI,DOSEc(030)) NULL,formalT)
  • derlt-pd(EMAX,ASSY,SLOP,EDI)
  • parderlt-attr(der,"gradient")
  • plot(030,RICH131,lwd2,type"l",xlab"Dose
    (mg)",ylab"Change from baseline ()")
  • lines(030,parder,190,lwd2,col2)
  • lines(030,-parder,45,lwd2,col5)
  • lines(030,parder,37,lwd2,col4)
  • lines(030,parder,24,lwd2,col3)
  • legend(23,75,c("EMAX","ASSY","SLOP","EDI"),type"b
    ",ltyc(1,1,1,1),colc(2,3,4,5))

58
Back-up slides
59
Non-parametric bootstrap characterising model
uncertainty
Response
Dose
Write a Comment
User Comments (0)
About PowerShow.com