Title: Phase 2 doseresponse design: optimal doses
1Phase 2 dose-response design optimal doses
sample-size selection
Patrick Johnson, Pfizer Global Research
Development, UK Acknowledgement Virginie
Herben, Thomas Kerbusch, Jacqui Spanton Byron
Jones (Pfizer) Jakob Ribbing (Uppsala
University, Sweden)
2Agenda
- Overview purpose
- Dose-response study problem
- Dose selection
- Best Model
- Partial derivatives
- Simulation for information
- OTD warning
- Sample size
- Trial simulation
- Conclusion
3Overview
- After POC/POM main aim of Phase 2 to characterise
dose-response - FDA
- 10 years ago Have you got the correct dose?
- Now Whats the dose-response?
- Important design features of dose-response
studies - Dose selection
- Sample size
4Overview
- Dose selection
- How many?
- Which doses?
- How do you determine sample size?
- Most dose-response studies include formal
(pair-wise) comparison - Efficient pair-wise ? efficient dose-response
5Overview
- Post POC usual to have dose-response model based
on current knowledge (quantified best guess) - Optimal design theory could aid in
dose-selection - Sample size subsequently selected using
simulation (/or ODT)
6Purpose
- Describe efficient process of selecting dose(s)
and sample size using optimal design theory and
simulation in example dose-response study - Example in spirit with a current project
- Simplified for illustration
- Splus (code last slide)
7Dose-response problem
8Background
- Example (any indication)
- Endpoint change from baseline ()
- No placebo effect
9Background
10X
X
X
11Background
- Phase 2a 10, 25 50 mg
- Drug is efficacious and safe
- Not fully characterised dose-response
- Lower dose may give similar effect and less/no
AEs
12Aim
- Design study that, in combination with P2a data,
fully characterises dose-response - Questions
- Dose selection?
- Sample size (no pair-wise comparisons)?
13Dose-selection
14Dose-selection strategy
- Dose-response model based on P2a data
- Using best model, apply optimal design theory
to select lower doses that will augment P2a data
and fully characterise dose-response
15Assumptions
- Model parameter estimate are correct
- Unlikely to be true
- Model based on current knowledge so best guess
- Better than gut feeling
16Dose-response best model
X
X
X
17Sigmoid Emax model
- As Emax model with additional parameter (n)
- Modifies steepness of response
18Sigmoid Emax model
n5
n2
n1
n0.5
Symmetrical about ED50
19Richards model
- As Sigmoid Emax with additional parameter
- Incorporates possible asymmetry (ASSY)
- Nesting
- If ASSY1, Sigmoid Emax
- If ASSY1 n1, Emax
20Richards model
21Example Dose-response study
4 parameter problem (EMAX, EDI, n
(sigmoid) ASSY)
22Dose-selection problem
- Need to select 2 new doses
- What are the optimal 2 doses that maximise
information collected (parameter estimates)?
23Wheres the information?
ASSY? n (sigmoid)?
24Look at partial derivatives
Splus deriv()
25Partial derivatives (Emax)
26Partial derivatives (EDI)
27Partial derivatives (n)
28Partial derivatives (ASSY)
29Maybe use partial derivative peaks?
At peaks youre collecting information on other
parameters
30Mathematical compromise?
31Partial derivatives
- Doses at PD peaks probably not too far off
- Need to incorporate
- Mathematical compromise parameter covariance
- P2a information we have at higher doses (Emax
sigmoid)
32Why not use available software?
- Good optimal design software available (e.g.
PFIM, POPT, OPTDES) - Specify model design characteristics
- Optimal dose-selection solution
- No account for previous data at higher doses
- Get the question correct
- What are the 2 optimal doses that when added to
data already collected will best characterise the
dose-response? - Simulation for information
33Simulation framework
- Richards model
- Incorporate previous P2a data
- Constrained by 2 additional doses
- Construct grid of possible dosing permutations
- Simulate for each dosing permutation
- Combine simulated data with previous data and
calculate information collected - Select dosing permutation with most information
34Simulation
35Richards model
EMAX 100 EDI 4 n (sigmoid) 2 ASSY 0.1
36Simulation
- Richards model
- Realistic grid of dosing permutations
37Realistic grid of dosing permutations
Constraints D1 0.5-9.5 mg, by 0.5 D2 0.5-9.5
mg, by 0.5 Removed duplications Used
expand.grid()
38Example dosing permutations
171 dosing permutations
39Simulation
- Need a model
- Realistic grid of dosing permutations
- For each dosing permutation
40For example
41Simulation
- Need a model
- Realistic grid of dosing permutations
- For each dosing permutation
- Add previous P2a doses
42For example
43Simulation
- Need a model
- Realistic grid of dosing permutations
- For each dosing permutation
- Add previous doses
- Calculate derivative for each parameter at each
dose (J)
44For example
ASSY
n
EMAX
EDI
1.0
2.0
J
10.0
25.0
50.0
45Simulation
- Need a model
- Realistic grid of dosing permutations
- For each dosing permutation
- Add previous doses
- Calculate derivative for each parameter at each
dose (J) - Generate Fisher Information Matrix (FIM)
(JwJT)
46Simulation
- Need a model
- Realistic grid of dosing permutations
- For each dosing permutation
- Add previous doses
- Calculate derivative for each parameter at each
dose (J) - Generate Fisher Information Matrix (FIM)
(JwJT) - Calculate information collected (detFIM)
47Top 10
48Dose selection
- Select 2.5 4.0 mg as 2 new doses
- Not exact solution (depends on resolution)
- Other theoretical methods
49OTD Warning
50Assumption/constraints
- A priori, need to specify
- Model structure (Emax etc.,)
- Parameter values
- What, if I knew that I wouldnt need to do the
experiment! - Well, estimated parameter values
- Not unusual to have these after POC/P2a
51Select sample size
52Sample size
- 2 new doses
- Need to select justify sample size
- No formal comparison (no NQuery)
- Collecting information on dose-response
- How much information?
- Investigate using trial simulation
53Trial simulation
- For each potential sample size (e.g. 16, 24, 32,
40 48 subjects) - Simulate 2 new doses from your model
- Combine simulated data with existing data
- Update model
- Goal good PARAMETER ESTIMATION
- For this example used EDI (measure of location,
similar to ED50)
54EDI expected-estimation error ()
55Dose-response design solution
- Dose selection
- Optimal doses 2.5 4.0 mg (not exact)
- May not be feasible
- Can discriminate between possible dosing options
- Sample size
- Sample size of 32 subjects offers good estimation
(in all parameters) - Additional subjects offer little benefit (point
of diminishing returns)
56Conclusion
- For illustration used simplified example
- Optimal theory allows more efficient resource
allocation - Optimal theory can incorporate
- Residual error model
- Random effects
- Sample size (w/o need for simulation)
- Number of doses
- Get benefit by going through the process (asking
right questions)
57Splus simulation code
-
- APlot richards model
-
- DOSElt-0100 EMAXlt-100 SLOPlt-2 ASSYlt-0.1
EDIlt-4 - RICHlt-EMAX/((1ASSYexp(SLOPlog(EDI/DOSE)))(1/A
SSY)) - plot(DOSE,RICH,type'l',ylimc(0,110),xlab'Dose',
ylab'Change from baseline ()',lwd2) -
- Partial derivatives
-
- pdlt-deriv((EMAX/((1ASSYexp(SLOPlog(EDI/DOSE)))
(1/ASSY))),c("EMAX","ASSY","SLOP","EDI"),functio
n(EMAX,ASSY,SLOP,EDI,DOSEc(030)) NULL,formalT) - derlt-pd(EMAX,ASSY,SLOP,EDI)
- parderlt-attr(der,"gradient")
- plot(030,RICH131,lwd2,type"l",xlab"Dose
(mg)",ylab"Change from baseline ()") - lines(030,parder,190,lwd2,col2)
- lines(030,-parder,45,lwd2,col5)
- lines(030,parder,37,lwd2,col4)
- lines(030,parder,24,lwd2,col3)
- legend(23,75,c("EMAX","ASSY","SLOP","EDI"),type"b
",ltyc(1,1,1,1),colc(2,3,4,5)) -
58Back-up slides
59Non-parametric bootstrap characterising model
uncertainty
Response
Dose