Title: FEM
1???????????
FEM???? 2005/09/12
?? ?? ?????????????
2Agenda
- Variational Principles in Static and Dynamics
- One-dimensional Beam Extension
- One-dimensional Finite Element Method
- Extension to Two-dimensional FEM
- Inelastic Deformation
3Variational Principle in Statics
4Internal energy
equilibrium
5Cartesian coordinates
Geometric constraint
Variational principle in statics
6Introduce Lagrange multiplier
equilibrium
7Variational Principle in Dynamics
8Lagrangean
9Largange equation of motion
Equation of rotation
10Cartesian coordinates
Geometric constraint
Lagrangean under geometric constraint
11(No Transcript)
12Largange equation of motion
magnitude of constraint force
direction of constraint force
13ODE solver
constant time step
14(No Transcript)
15(No Transcript)
16adaptive time step
17Constraint Stabilization Method
Simple pendulum with Cartesian coordinates
Equations of motion under geometric constraint
18Algebraic equation
Differential equation
19(No Transcript)
201D Beam Extension
21Static Modeling
Elastic Potential Energy
Work done by External Force
Geometric constraint
22Variational Principle in Statics
23Finite Element Method
- Divide an integral (U or T) over a region into
integrals over small regions. - Approximate a function in each small region by a
simple (e.g. linear) function. - Calculate the each divided integrals.
- Sum up all calculated integrals to derive the
original integral.
24Piecewise Linear Approximation
25Piecewise Linear Approximation
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Optimization w.r.t. function
Optimization w.r.t. vector
30Stiffness matrix
External force
Geometric constraint
geo
31Variational principle in statics
32Static extension of uniform beam
33Static extension of irregular beam
34Dynamic extension of beam
Lagrangean under geometric constraint
35(No Transcript)
36Lagrange equation of motion
elastic force
external force
constraint force
inertial force
37Constraint Stabilization Method
algebraic equation
differential equation
38Dynamic equations
39Viscoelastic deformation
Connection matrix
material
object
40(No Transcript)
41Extension to 2D Deformation
42Piecewise linear approximation
point Pi
point Pj
point Pk
43Stress-strain relationship
Stress (pseudo) vector
Strain (pseudo) vector
44Isotropic elastic deformation
45Strain-displacement relationship
46Elastic potential energy
47Displacement in DPiPjPk
Stress in DPiPjPk
48Potential energy in DPiPjPk
connection matrices (geometric)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58Variational principle in statics
59Kinetic energy
60Inertia matrix
Lumped Inertia Matrix
61Lagrangean under geometric constraints
elastic forces
62Computation of elastic forceswithout
constructing total matrix K
63Computation of elastic forces
64(No Transcript)
65Physical parameters
E Youngs modulus (elastic modulus) n Poisson
ratio
66(No Transcript)
67Viscoplastic Deformation
relaxation function
682D/3D isotropic viscoplasticity
1D material
2D/3D material
69Viscoplastic forces
2D/3D material
70Dyn. eqs. viscoplatic deformation
71(No Transcript)
72(No Transcript)
73Computation of viscoplastic forces
74(No Transcript)
75(No Transcript)
76Physical parameters
E Youngs modulus (elastic modulus) nela
Poisson ratio for elasticity
lela, mela
c viscous modulus nvis Poisson
ratio for viscosity
lvis, mvis
77(No Transcript)
78Rheological deformation
79(No Transcript)
80Dyn. eqs. rheological deformation
81Computation of rheological forces
82for example
83(No Transcript)
84Physical parameters
E Youngs modulus (elastic modulus) nela
Poisson ratio for elasticity
lela, mela
c1, c2 viscous moduli nvis1 ,nvis1
Poisson ratios for viscosity
lvis1, mvis1 , lvis2, mvis2
85(No Transcript)
86Summary
- Continua model provides a foundation of object
deformation. - Finite element approximation comes from a nature
of integrals an integral over a region can be
divided into integrals over small regions that
cover the original region. - Inelastic deformation including viscoplastic and
rheological deformation can be described by a set
of differential equations.
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)