FEM - PowerPoint PPT Presentation

1 / 92
About This Presentation
Title:

FEM

Description:

Variational Principle in Statics. Finite Element Method ... Variational principle in statics. Static extension of uniform beam ... – PowerPoint PPT presentation

Number of Views:421
Avg rating:3.0/5.0
Slides: 93
Provided by: mintSeRi
Category:
Tags: fem | statics

less

Transcript and Presenter's Notes

Title: FEM


1
???????????
FEM???? 2005/09/12
?? ?? ?????????????
2
Agenda
  • Variational Principles in Static and Dynamics
  • One-dimensional Beam Extension
  • One-dimensional Finite Element Method
  • Extension to Two-dimensional FEM
  • Inelastic Deformation

3
Variational Principle in Statics
4
Internal energy
equilibrium
5
Cartesian coordinates
Geometric constraint
Variational principle in statics
6
Introduce Lagrange multiplier
equilibrium
7
Variational Principle in Dynamics
8
Lagrangean
9
Largange equation of motion
Equation of rotation
10
Cartesian coordinates
Geometric constraint
Lagrangean under geometric constraint
11
(No Transcript)
12
Largange equation of motion
magnitude of constraint force
direction of constraint force
13
ODE solver
constant time step
14
(No Transcript)
15
(No Transcript)
16
adaptive time step
17
Constraint Stabilization Method
Simple pendulum with Cartesian coordinates
Equations of motion under geometric constraint
18
Algebraic equation
Differential equation
19
(No Transcript)
20
1D Beam Extension
21
Static Modeling
Elastic Potential Energy
Work done by External Force
Geometric constraint
22
Variational Principle in Statics
23
Finite Element Method
  • Divide an integral (U or T) over a region into
    integrals over small regions.
  • Approximate a function in each small region by a
    simple (e.g. linear) function.
  • Calculate the each divided integrals.
  • Sum up all calculated integrals to derive the
    original integral.

24
Piecewise Linear Approximation
25
Piecewise Linear Approximation
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
Optimization w.r.t. function
Optimization w.r.t. vector
30
Stiffness matrix
External force
Geometric constraint
geo
31
Variational principle in statics
32
Static extension of uniform beam
33
Static extension of irregular beam
34
Dynamic extension of beam
Lagrangean under geometric constraint
35
(No Transcript)
36
Lagrange equation of motion
elastic force
external force
constraint force
inertial force
37
Constraint Stabilization Method
algebraic equation
differential equation
38
Dynamic equations
39
Viscoelastic deformation
Connection matrix
material
object
40
(No Transcript)
41
Extension to 2D Deformation
42
Piecewise linear approximation
point Pi
point Pj
point Pk
43
Stress-strain relationship
Stress (pseudo) vector
Strain (pseudo) vector
44
Isotropic elastic deformation
45
Strain-displacement relationship
46
Elastic potential energy
47
Displacement in DPiPjPk
Stress in DPiPjPk
48
Potential energy in DPiPjPk
connection matrices (geometric)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
Variational principle in statics
59
Kinetic energy
60
Inertia matrix
Lumped Inertia Matrix
61
Lagrangean under geometric constraints
elastic forces
62
Computation of elastic forceswithout
constructing total matrix K
63
Computation of elastic forces
64
(No Transcript)
65
Physical parameters
E Youngs modulus (elastic modulus) n Poisson
ratio
66
(No Transcript)
67
Viscoplastic Deformation
relaxation function
68
2D/3D isotropic viscoplasticity
1D material
2D/3D material
69
Viscoplastic forces
2D/3D material
70
Dyn. eqs. viscoplatic deformation
71
(No Transcript)
72
(No Transcript)
73
Computation of viscoplastic forces
74
(No Transcript)
75
(No Transcript)
76
Physical parameters
E Youngs modulus (elastic modulus) nela
Poisson ratio for elasticity
lela, mela
c viscous modulus nvis Poisson
ratio for viscosity
lvis, mvis
77
(No Transcript)
78
Rheological deformation
79
(No Transcript)
80
Dyn. eqs. rheological deformation
81
Computation of rheological forces
82
for example
83
(No Transcript)
84
Physical parameters
E Youngs modulus (elastic modulus) nela
Poisson ratio for elasticity
lela, mela
c1, c2 viscous moduli nvis1 ,nvis1
Poisson ratios for viscosity
lvis1, mvis1 , lvis2, mvis2
85
(No Transcript)
86
Summary
  • Continua model provides a foundation of object
    deformation.
  • Finite element approximation comes from a nature
    of integrals an integral over a region can be
    divided into integrals over small regions that
    cover the original region.
  • Inelastic deformation including viscoplastic and
    rheological deformation can be described by a set
    of differential equations.

87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com