Title: Diapositive 1
1ASYMMETRIC EPOXIDATION OF OLEFINS BY SHIS
CATALYST AND SYNTHESIS OF CRYPTOPHYCIN 52
1st seminar Patrick Beaulieu
October 30, 2003
2OUTLINE
3REAGENTS FOR EPOXIDATION
PERACIDS
Prilezhaev reaction
Stereospecific syn addition
4EPOXIDATION CATALYZED BY METAL
1- Peroxide metal complex
Metal most frequently used V, Ti
High enantioselectivity with allylic alcohols
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765
52- Oxo-based catalysts (MO)
Jacobsen-Katsuki catalyst
Excellent for cis and trisubstituted olefins Poor
ee obtained with trans substrates
Jacobsen, E. N. J. Org. Chem. 1994, 59, 4378
6DIOXIRANES
byproduct
Stereospecific syn addition
Oxone KHSO5.KHSO4.K2SO4
Yang, D. J. Am. Chem. Soc. 1996, 118, 11311
7Generation of Dioxiranes
?
Isolated species
0.1M solution for DMDO 0.8M solution for TFDO
?
In situ generation
Excess of oxone, NaHCO3 buffer at pH 7-8, in
biphasic (CH2Cl2/H2O) or monophasic (CH3CN/H2O)
conditions
Organic syntheses, CV 9, 288
8MECHANISM OF GENERATION AND REACTION WITH OLEFINS
Edwards, J. O. Photochem. Photobiol. 1979, 30,
63 Shi, Y. J. Org. Chem. 1998, 63, 6425-6426
9NOVEL METHODOLOGIE
Hydroden peroxide as primary oxidant
?
The solvent must be a nitrile
?
Big advantages for process chemistry
Less solvent required
Less salts introduced
Bach, R. D. J. Org. Chem. 1983, 48, 888
Shi, Y. Tetrahedron 2001, 57, 5213
10MECHANISTIC BACKGROUND
FMO
11TRANSITION STATE
Planar
Spiro
Evidence for spiro mode
1- Experimental observation
Epoxidation of cis alkene is 8.3 times faster
Peracids have the same reactivity for both alkenes
Baumstark, A. L. J. Org. Chem. 1988, 53, 3437
122- Steric hindrence
Cis alkene
Trans alkene
133- Computer calculation
Stabilization with the oxygene electron lone
pairs and the LUMO
7.4 Kcal/mol more stable
Houk. K. N. J. Am. Chem. Soc. 1997, 119, 10147
14ASYMMETRIC EPOXIDATION WITH DIOXIRANES
First examples
Low conversion Days to 1 week reaction 9-12.5 ee
High conversion 24h-48h reaction 13-20 ee
Curci, R. J. Chem. Soc Chem. Commun. 1984, 155
Curci, R. Tet. Lett. 1995, 36, 5831
15MAJOR BREAKTROUGH
THE SHIS CATALYST
Epoxidation of olefins mediated by a
fructose-derived ketone
?
Preparation of the D-enantiomer
Commercially available 106 / 5g The enantiomer
is prepared from a 5 steps procedure from
L-sorbose
Sugai, S. Tetrahedron, 1991, 47, 2133
16?
Preparation of the L-enantiomer
Whistler, R. L. Carbohydr. Res. 1988, 175, 265-271
17PRELIMINARY RESULTS
Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806
18OPTIMIZATION TOWARDS A ROBUST CATALYTIC CYCLE
19KETONE CONFIGURATION
Hydrate form ? Added steric hindrence?
20pH EFFECT
?
Autodecompositon of oxone
?
Catalyst stability
21pH EFFECT
Shi, Y. J. Am. Chem. Soc. 1997, 46, 11224
22KETONE REACTIVITY
?
Background reaction with oxone
?
Catalyst decomposition with oxone
23THE BAYER-VILLIGER
24THE BAYER-VILLIGER
Shi, Y. J. Org. Chem. 2001, 66, 521
25OPTIMIZED RESULTS
Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224
26OPTIMIZED RESULTS
82, 95 ee
94, 98 ee
94, 89 ee
Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224
27CONJUGAISON EFFECT ON ENANTIOSELECTIVTY
FMO
28ORIGINE OF THE ENANTIOSELECTIVITY
Major
29ORIGINE OF THE ENANTIOSELECTIVITY
Minor
30ENERGY OF THE SPIRO TRANSITION STATE
0oC
78, 98 ee
0oC
31DRAWBACK
?
Low enantioselectivity with cis and terminal
olefins
95, 20 ee
90, 24 ee
43, 61 ee
?
Competition between spiro and planar transition
state
Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224
32A LOOK AT THE TRANSITION STATE
?
The poor differentiation in the TS results in
lower ee
?
A different approach or catalyst was then required
33SOLUTION 1
Access to disubstituted geminal alkenes
via 2,2-disubstituted vinylsilanes
Murai, S. J. Org. Chem. 1995, 60, 1834
Shi, Y. J. Org. Chem. 1999, 64, 7675
34SOLUTION 2
Improvement through catalyst design
Effect of the spiro Five membered ring ketal
Electronic attraction between Ph and NBOC group
Shi, Y. J. Org. Chem. 2002, 67, 2435
35AN INTRIGUING REVERSE IN STEREOSELECTIVITY!
36FURTHER RESULTS
Effect the substituent
Shi, Y. Org. Lett. 2003, 5, 293
37SYNTHESIS OF 2ND GENERATION SHIS CATALYST
Shi, Y. J. Org. Chem. 2003, 68, 4963
38(No Transcript)
39SUMMARY
40TOTAL SYSTHESIS OF CRYPTOPHYCIN 52
- Natural product isolated from blue-green algae
- Cryptophycin 1 exhibits a broad spectrum of
antitumor activity in mice - First synthezised by Kitigawa in 1994 and than by
Moore and Tius in 1995 - Cryptophycin 52 is in advanced clinical
evaluation for the treatment of solid tumors - An improve synthesis done by the Eli Lilly
research group in 2002
41(No Transcript)
42RETROSYNTHESIS
43BLUE FRAGMENT SYNTHESIS
44COUPLING OF BLUE AND RED FRAGMENTS
45SHI EPOXIDATION
46TRANSITION STATE OF EPOXIDATION
47BLACK FRAGMENT SYNTHESIS
48(No Transcript)
49ACKNOWLEDGEMENTS
Bill Ogilvie Livia Aumond Myra Bertrand Val
Charbonneau Ami Jun-Yee Chin Josée
Cloutier Heather Foucault Joseph Jebreen Marc
Lafrance Alison Lemay Mathieu Lemay Joseph Moran