Title: Binary Multipliers
1Binary Multipliers
The key trick of multiplication is memorizing a
digit-to-digit table Everything else was just
adding
Youve got to be kidding It cant be that easy
Reading Study Chapter 3 (including Booth coding)
2Binary Multiplication
Binary multiplication is implemented using the
same basic longhand algorithm that you learned in
grade school.
A0
A1
A2
A3
B0
B1
B2
x
B3
A0B0
A1B0
A2B0
A3B0
AjBi is a partial product
A0B1
A1B1
A2B1
A3B1
A0B2
A1B2
A2B2
A3B2
A0B3
A1B3
A2B3
A3B3
Multiplying N-digit number by M-digit number
gives (NM)-digit result
Easy part forming partial products (just an AND
gate since BI is either 0 or 1) Hard part adding
M, N-bit partial products
3Multiplication Implementation
S
t
a
r
t
M
u
l
t
i
p
l
i
e
r
0
0
M
u
l
t
i
p
l
i
e
r
0
1
t
N
o
lt
3
2
r
e
p
e
t
i
t
i
o
n
s
3
2
n
d
r
e
p
e
t
i
t
i
o
n
?
Y
e
s
3
2
r
e
p
e
t
i
t
i
o
n
s
4Second Version
S
t
a
r
t
M
u
l
t
i
p
l
i
c
a
n
d
3
2
b
i
t
s
M
u
l
t
i
p
l
i
e
r
0
0
M
u
l
t
i
p
l
i
e
r
0
1
M
u
l
t
i
p
l
i
e
r
3
2
-
b
i
t
A
L
U
S
h
i
f
t
r
i
g
h
t
3
2
b
i
t
s
S
h
i
f
t
r
i
g
h
t
P
r
o
d
u
c
t
C
o
n
t
r
o
l
t
e
s
t
W
r
i
t
e
6
4
b
i
t
s
i
f
t
t
h
e
M
u
l
t
i
p
l
i
e
r
r
e
g
i
s
t
e
r
r
i
g
h
t
1
b
i
t
N
o
lt
3
2
r
e
p
e
t
i
t
i
o
n
s
3
2
n
d
r
e
p
e
t
i
t
i
o
n
?
Y
e
s
3
2
r
e
p
e
t
i
t
i
o
n
s
5Example for second version
6Final Version
S
t
a
r
t
M
u
l
t
i
p
l
i
c
a
n
d
3
2
b
i
t
s
P
r
o
d
u
c
t
0
0
P
r
o
d
u
c
t
0
1
3
2
-
b
i
t
A
L
U
C
o
n
t
r
o
l
S
h
i
f
t
r
i
g
h
t
P
r
o
d
u
c
t
t
e
s
t
W
r
i
t
e
6
4
b
i
t
s
The trick is to use the lower half of the
productto hold the multiplier during the
operation.
N
o
lt
3
2
r
e
p
e
t
i
t
i
o
n
s
e
p
e
t
i
t
i
o
n
?
Y
e
s
3
2
r
e
p
e
t
i
t
i
o
n
s
7What about the sign?
- Positive numbers are easy.
- How about negative numbers?
- Please read Booth coding in textbook
8Faster Multiply
A1 B
A0 B
A2 B
A3 B
A31 B
P1
P2
P0
P32-P63
P31
9Simple Combinational Multiplier
tPD (2(N-1) N) tPD,FA
Components N HA N(N-1) FA
NB this circuit only works for nonnegative
operands
10Carry-Save Combinational Multiplier
Observation Rather than propagating the sums
across each row, the carries can instead be
forwarded onto the next column of the following
row
tPD 8 tPD,FA
tPD (NN) tPD,FA
Components N HA N2 FA
11Division
Start
1. Subtract Divisor from the Remainder leave the
result in the Remainder
gt0
lt0
Test Remainder
Restore Remainder by adding DivisorShift
Quotient to the leftset its rightmost bit 0
Shift Quotient to the leftset its rightmost bit
1
Shift Divisor Register right 1 bit
Repeat 33times