Title: Phase Transition in Linear Sigma model
1Phase Transition in Linear Sigma model
- -Application of Optimized Perturbation Theory
Nordic Winter School, Gausdal, 09/01-01
Kristian Berland, NTNU, Trondheim
Collaborator Jens O. Andersen
2Overview
- Introduction
- QCD phase diagram
- O(4) linear sigma model.
- Optimized perturbation theory
- Breakdown of naive perturbation theory
- Resummation strategy Optimized perturbation
theory - Investigation of Phase transition (of Z2 )
3QCD Phase diagram
4Crude estimate of TC
- Approximations
- All particles are massless
- MIT Bag Model
- Hot Hadron Gas
5Linear Sigma model
- Effective theories
- Two flavor massless QCD SUv(2)xSUA(2)xUv (1) x
UA(1) - Group Theory SUv(2)xSUA(2) O(4)
- O(4) Linear Sigma model
- Spontaneous symmetry breaking
- O(4) ? O(3) 3 broken generators
- Nature 3 pions
- Expect phase transition
6Effective potential
7Optimized pertubation theory
- Dynamics generate mass
- Interaction is not a
perturbation!
8Optimized perturbation theory
- Effect of new terms
- Changed mass in propagator
- New interaction
Principle of minimal sensitivity
Choice
- 1- loop calculation
- PMS fails.
- FAC 1. order phase transition
Hatsuda, Chiku, Phys Rev D, 58, 076001 (1998)
92-loop calculations
- 2. order phase transition
- Critical exponent ½
- Cures infrared divergence
- HTL at high T
10Summary
- Breakdown of perturbation theory
- Resummation Optimized perturbation theory
- 2. order phase transition (2-loop order)
- Critical exponent ½ (mean field type)
- Outlook
- OPT applied to (comparison)
- O(4) Linear Sigma model
- U(2) x U(2) model
Kristian Berland krisberl_at_stud.ntnu.no
Collaborator Jens O. Andersen