Phase Transition in Linear Sigma model - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

Phase Transition in Linear Sigma model

Description:

Phase Transition in Linear Sigma model -Application of Optimized ... Optimized pertubation theory. Dynamics generate mass : Interaction is not a perturbation! ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 11
Provided by: kristian8
Category:

less

Transcript and Presenter's Notes

Title: Phase Transition in Linear Sigma model


1
Phase Transition in Linear Sigma model
  • -Application of Optimized Perturbation Theory

Nordic Winter School, Gausdal, 09/01-01
Kristian Berland, NTNU, Trondheim
Collaborator Jens O. Andersen
2
Overview
  • Introduction
  • QCD phase diagram
  • O(4) linear sigma model.
  • Optimized perturbation theory
  • Breakdown of naive perturbation theory
  • Resummation strategy Optimized perturbation
    theory
  • Investigation of Phase transition (of Z2 )

3
QCD Phase diagram
4
Crude estimate of TC
  • Approximations
  • All particles are massless
  • MIT Bag Model
  • Hot Hadron Gas

5
Linear Sigma model
  • Effective theories
  • Two flavor massless QCD SUv(2)xSUA(2)xUv (1) x
    UA(1)
  • Group Theory SUv(2)xSUA(2) O(4)
  • O(4) Linear Sigma model
  • Spontaneous symmetry breaking
  • O(4) ? O(3) 3 broken generators
  • Nature 3 pions
  • Expect phase transition

6
Effective potential
  • For simplicity




  • Infrared divergence

7
Optimized pertubation theory
  • Dynamics generate mass
  • Interaction is not a
    perturbation!
  • Solution Add zero

8
Optimized perturbation theory
  • Effect of new terms
  • Changed mass in propagator
  • New interaction

  • How determine ?

Principle of minimal sensitivity
Choice
  • 1- loop calculation
  • PMS fails.
  • FAC 1. order phase transition


Hatsuda, Chiku, Phys Rev D, 58, 076001 (1998)
9
2-loop calculations
  • Diagrams
  • 2. order phase transition
  • Critical exponent ½
  • Cures infrared divergence
  • HTL at high T

10
Summary
  • Breakdown of perturbation theory
  • Resummation Optimized perturbation theory
  • 2. order phase transition (2-loop order)
  • Critical exponent ½ (mean field type)
  • Outlook
  • OPT applied to (comparison)
  • O(4) Linear Sigma model
  • U(2) x U(2) model

Kristian Berland krisberl_at_stud.ntnu.no
Collaborator Jens O. Andersen
Write a Comment
User Comments (0)
About PowerShow.com