BIRTH ASPHYXIA and organs failure - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

BIRTH ASPHYXIA and organs failure

Description:

?????? O2 ???? Perinatal ?????????????? ?????????????????????????? ... Alveolar distension compresses alveolar vessels increasing PVR and RV afterload ... – PowerPoint PPT presentation

Number of Views:1269
Avg rating:3.0/5.0
Slides: 53
Provided by: Pedi160
Category:

less

Transcript and Presenter's Notes

Title: BIRTH ASPHYXIA and organs failure


1
BIRTH ASPHYXIAand organs failure
  • BY
  • SUPPAWAT BOONKASIDECHA MD.
  • NEONATAL DIVISION
  • DEPARTMENT OF PEDIATRICS

2
BIRTH ASPHYXIA
  • ?????????
  • ???? Perinatal ?????????????????????? O 2
    ?????????
  • 90 Intrauterine and perinatal
  • 10 Post natal
  • ?????? O2 ???? Perinatal ??????????????
    ??????????????????????????
  • Cerebral palsy ??????? Asphyxia ??? 90
    ( Nelson KB, Clin. Perinatal 1989 )

3
  • Definition Perinatal asphyxia
    ??????????
  • 1. ???????? O2 ( hypoxemia )
  • 2. CO2 ??? ( hypercapnia )
  • 3. ????????????????????? pH, HCO3, Base
    deficit Intrauterine asphyxia
  • HR. ???????????????????
  • Late deceleration
  • Fetal scalp blood pH at 1 ???? lt 7.19

4
Apgar score and asphyxia
5
INCIDENCE
6
???????????????????? Asphyxia
7
Pathophysiology
8
?????????????????????
9
??????????????????
10
Hypoxic ischemic encephalopathy(HIE)
  • ???????????????????????????????????O2
    ??????????????
  • Mild hyperalertness irritability
  • Moros and DTR
  • mild hypotonia
  • rare apnea or seizure
  • recover in 48 72 hrs

11
HIE
  • Moderate
  • hypotonia DTR
  • apnea seizure
  • hypoactive after 72 hrs
  • abnormal sucking swallowing
  • recover in 1 week

12
HIE
  • Severe
  • hypoactive to coma
  • hypo or hyperventilation
  • apnea ,early refractory seizure
  • severe hypotonia
  • severe neurological deficit

13
MANAGEMENT OF
POST ASPHYXIAL SYNDROME
14
AIM OF MANAGEMENT
15
  • ????????????????
  • I Supportive care -
  • Temp Vital and neuro signs
  • RR keep paO2 60 90, pCO2 30-35
  • Reoxygenation and reperfusion theory
  • BP and circulation
  • MAP ?????? GA ( in 1st day to 1st wks )
  • Metabolic management
  • Fluid management restrict fluid ?????
    Oliguria IWL U/O Extrarenal loss

16
????????? HIE
17

18
PROGNOSIS
19
(No Transcript)
20
EEG
21
Cranial U/S or CT Brain
22
Heart failure
  • ??????????????????????????????????????????????????
    ???????????
  • ?????? ?????? ??????? ???????????
  • ???????????????????????
  • ????? ??????????????????????
  • Ductus arteriosus dependentcyanotic heart dz-
  • AS PS PA Coarctation

23
?????????????????
  • ????????????????????????????
  • ????????? ?????????????
  • Cardiomegaly hepatomegaly
  • Hyperactive precordium
  • Crepitation or rhonchi
  • hypotension

24
????????????
  • Supportive care -
  • Vital signs I/O BW
  • Oxygen therapy except Ductus arteriosus
    dependent
  • maintain BP and circulation
  • Metabolic management
  • Fluid management restrict fluid salt and
    diuretics if clinical heart failure indicated

25
????????????
  • ?????????????????????
  • Medications
  • - inotropic drugs dopamine dobutamine
  • - sedative drugs MO
  • systemic venous capacitance
  • blood volume to lung
  • LA pressure

26
Acute renal failure
  • ??????????????????????????????????????????????????
    ???
  • ???????? ?????????????????waste product BUN / Cr
  • oliguria and polyuria
  • Associated with perinatal hypoxia and hypovolemia
  • Hemmorhage sepsis shock and nephrotoxic drugs
  • Congenital anomalies
  • Prerenal , renal , post renal causes

27
Fractional excretion of Na
  • Renal Fn cant assess by urine flow rate alone
  • FeNa UNa x plasma Cr /Plasma Na x UCrx100
  • The best discrimination parenchymal injury and
    hypoperfusion
  • If FeNa lt 1 indicate hypoperfusion
  • If FeNa gt 2.5 indicated renal injury

28
????????????
  • ????????????????????????????????????????????????
  • Total fluid ISL U/O extrarenal loss
  • ISL term 30 cc / kg / day
  • ISL preterm 50-70 cc / kg / day
  • ?????????????????????????????????? ??????????
    ??????urine
  • ???????????????? ???????????? ????
    ???????????????????????????????????????????????
    ????metabolic acidosis
  • Adequate nutrition and proper protein intake

29
Acute respiratory failure
  • To support or improve pulmonary gas exchange
  • Alter pressure volume relation
  • reverse hypoxemia and acute respiratory
    acidosis
  • reverse atelectasis and improve lung function
  • lung and airway healing eg. post op
  • To reduce respiratory distress or work of
    breathing

30
Clinical objectives
  • Decrease myocardial oxygen demand
  • Reduce intracranial pressure (ICP)
  • Stabilize chest wall, e. g. flail chest

31
Type of mechanical ventilators
  • Positive pressure ventilators
  • Pressure-cycled
  • Volume-cycled
  • Time-cycled
  • Flow-cycled
  • High frequency ventilators High frequency Flow
    interrupters, High frequency Jet and High
    frequency
  • Oscillator

32
Oxygen Concentration
  • Set FiO2 high initially to ensure PaO2 gt 60 mm Hg
  • Use lowest FiO2 to maintain SaO2 gt 90
  • FiO2lt 50 probably safe

33
Tidal Volume
  • Use lower VT (4 to 7 ml/kg) to avoid volutrauma
    to the lung (minimal or gentle ventilation )
  • Higher VT 10 to 15 ml/kg to prevent atelectasis
    but risks volutrauma
  • Permissive hypercapnia

34
Ventilator Rate
  • IMV - rate usually set high initially and then
    weaned as tolerated
  • CMV - backup rate should be 4 breaths less than
    patients rate
  • No rate set with pressure support

35
PEEP and CPAP
  • PEEP prevents atelectasis at end of expiration
    and FRC
  • CPAP similar except positive pressure continuous
    during inspiration

36
PEEP
  • Recruitment of atelectatic alveoli
  • Reduction of intrapulmonary shunt by
    redistribution of lung edema from alveoli to
    interstitial space
  • Permit use of lower FiO2
  • PEEP does not prevent ARDS

37
PEEP Recruitment of atelectatic alveoli
38
PEEP
  • PEEP can drop cardiac output by
  • Venacava compression
  • Alveolar distension compresses alveolar vessels
    increasing PVR and RV afterload
  • LV compliance decreased by increased juxtacardiac
    pressure from lungs

39
Modes of Positive Pressure ventilation An
Overview
  • Controlled mandatory ventilation
  • Required heavy sedation
  • Use primarily in OR
  • Assist control ventilation
  • More comfortable but difficult to waen
  • Intermittent mandatory ventilation (IMV)
  • Comfortable and allows weaning
  • Pressure support (PSV)

40
Assist-control mechanical ventilation AC)
  • Ventilator delivers volume or pressure after
    patient triggers
  • every breath trigger.
  • No spontaneous breaths allowed
  • Back up rate setting when patient trigger rate
    lower than setting rate.

41
Intermittent mandatory ventilation (IMV)
  • Patient receives periodic positive pressure
    breaths from ventilator at a set TV or pressure
  • Spontaneous breaths allowed in between machine
    breaths
  • Asynchronized ventilation

42
Synchronized Intermittent mandatory
ventilation (SIMV)
  • Patient receives periodic positive pressure
    breaths from ventilator at a set TV or pressure
    (window time frame)
  • Spontaneous breaths allowed in between machine
    breaths
  • Synchronized ventilation

43
(No Transcript)
44
Flow cycled Assist-control (Flow cycled AC)
  • Alter time-cycled to flow - cycled
  • Total synchronized both inspired and expired
    phases

45
High frequency ventilators
  • High frequency Flow interrupters
  • High frequency Jet and
  • High frequency Oscillator active both inspired
    andexpired phases

46
High frequency ventilators
  • respiratory rate gt 120 /min (2 Hz )in neonate or
  • respiratory rate gt 150 /min (2.5 Hz ) FDA
    definition
  • Tidal volume lt dead space volume
  • Minute ventilation tidal volume2 x rate

47
(No Transcript)
48
High frequency ventilators
  • Decrease BPD at 36 wks postconceptional age
  • In RDS and air leak syndrome rescue treatment
  • when compared to CMV ( multicenter trial )
    Cochrane
  • Decrease ECMO treatment in RDS and rescue Rx

49
Advantages
  • Uniform lung function
  • Improve ventilation at lower barotrauma and
    volumtrauma
  • CO2 elimination depend on tidal volume gt
    frequency
  • Oxygenation depend on lung volume Paw (MAP )

50
Disadvantages
  • may increase incidence of inadvertent peep to
    overinflation( due to short Te )
  • Then Ti should lt 50 ( Sensor Medics ) Alexander
    et al
  • Hemodynamic compromise
  • But Goodman et al found that no significant
    difference

51
conclusions
  • Clinician must not to be sediced by exciting
    preliminary evidence.
  • Early HFOV and new modes study would have
    advantages over conventionalBut these were not
    confirmed by meta-analysis study.
  • Proved efficacious in appropiated design study
  • Long term F/U fpr adverse outcome.

52
  • THANK YOU
Write a Comment
User Comments (0)
About PowerShow.com