Combustion Theory - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Combustion Theory

Description:

Results from gaseous reactants that are mixed prior to combustion ... Bunsen Burner. Flame moves at fairly low velocity. Mechanically create laminar conditions ... – PowerPoint PPT presentation

Number of Views:2119
Avg rating:5.0/5.0
Slides: 27
Provided by: Sha6179
Category:

less

Transcript and Presenter's Notes

Title: Combustion Theory


1
Combustion Theory Adiabatic Flame Temperature
  • Brian Moore
  • Shaun Murphy

2
Outline
  • Flame Theory
  • Combustion Chamber Chemistry
  • Adiabatic Flame Temperature
  • Example Problem

3
Types of Flames
  • Two basic categories
  • Pre-mixed
  • Diffusion
  • Both characterized as Laminar or Turbulent

4
Premixed
  • Results from gaseous reactants that are mixed
    prior to combustion
  • Flame propogates at velocities slightly less than
    a few m/s
  • Considered constant pressure combustion
  • Reacts quite rapidly

Example Spark Ignition Engine
5
Diffusion
  • Gaseous reactants are introduced separately and
    mix during combustion
  • Energy release rate limited by mixing process
  • Reaction zone between oxidizer and fuel zone

Example Diesel Engine
6
Laminar
  • Premixed
  • Ex. Bunsen Burner
  • Flame moves at fairly low velocity
  • Mechanically create laminar conditions
  • Diffusion
  • Ex. Candle Flame
  • Fuel Wax, Oxidizer Air
  • Reaction zone between wax vapors and air

7
Turbulent
  • Premixed
  • Heat release occurs much faster
  • Increased flame propagation
  • No definite theories to predict behavior
  • Diffusion
  • Can obtain high rates of combustion energy
    release per unit volume
  • Ex. Diesel Engine
  • Modeling is very complex, no well established
    approach

8
Flame Propagation
  • Initial spark causes pressure wave formation
  • Flame propagation considered constant pressure
  • Burned and Unburned regions
  • Unburned portion may undergo autoignition, known
    as Knock

9
Chemistry Basics
  • Reactants
  • Fuel Hydro-Carbon
  • Octane (C8H18)
  • Oxidizer Dry Air (D.A)
  • 21 O2
  • 79 N2
  • 1 mol O2 ? 3.76 mol N2
  • Products
  • CO2
  • H2O
  • N2

10
Example Using Butane
Ideal Chemical Equation
  • C4H10 O2 ? CO2 H2O
  • Balancing the Equation
  • Conservation of Mass
  • C4H10 6.5O2 ? 4CO2 5H2O

11
Example Cont.
  • Practical Chemical Equation
  • Air used as oxidizer, not pure oxygen
  • C4H10 6.5(O23.76N2) ? 4CO2 5H2O24.44N2
  • C4H10 31.03D.A. ? 4CO2 5H2O 31.03D.A -6.5O2

12
Balancing Made Easy
  • CaHb a(O23.76N2) ? bCO2 cH2O dN2
  • a a(b/4) b a c b / 2 d
    3.76a

13
Combustion Energy
  • DU Q - W
  • Q DU W
  • W PDV
  • Q DU PDV DH
  • Q Hprod - Hreact

14
Enthalpy
  • Enthalpy of Formation (Dhf)
  • Energy required to form the compound
  • Change in Enthalpy (Dh)
  • Difference in enthalpy between Product Temp. and
    Reference Temp.
  • Dh h(Tprod) - h(Tref)
  • Total Enthalpy (h)
  • h Dhf Dh
  • H S(nihi)

15
Adiabatic Assumptions
  • No heat transfer through cylinder walls
  • All energy transferred to engine work exhaust
    products
  • Allows Adiabatic Flame Temperature (AFT) to be
    calculated
  • Q 0 Hreact Hprod

16
Adiabatic Flame Temperature
  • Highest possible temperature that can be achieved
    during combustion
  • Never achieved in practice
  • No realistic combustion chamber is adiabatic
  • Dissociation lowers temperature
  • Analagous to Carnot cycle for Heat Engines
  • Useful design parameter
  • Upper limit of exhaust temp. is known
  • Calculation is an iterative process

17
AFT Example Calculation
  • Problem Statement Liquid Methane (CH4) is
    burned at a constant pressure. The air and fuel
    are supplied at 298 K and 1 atm. Determine the
    adiabatic flame temperature for these conditions
    assuming complete combustion.
  • Balance Chemical Equation
  • CH4 2(O23.76N2) ? CO2 2H2O7.52N2
  • Energy Balance and Adiabatic Assumptions
  • Q 0 Hprod Hreact Therefore,
    Hreact Hprod

18
Calculations Cont.
  • Determine Enthalpy of Reactants
  • Dhf, CH4 -74.81 kJ/mol (from chart)
  • Dhf, O2 Dhf, N2 0
  • Hreact S(nihi) (n of moles)
  • Hreact 1mol (-74.81 kJ/mol)
  • Hreact -74.81 kJ

19
Calculations Cont.
  • Determine Enthalpies of Products
  • Guess value for temperature required try 1000K
  • hCO2 Dhf, CO2 (hCO2(Tprod) hCO2(Tref))
  • hH2O Dhf, H2O (hH2O(Tprod) hH2O(Tref))
  • hN2 Dhf, N2 (hN2(Tprod) hN2(Tref))
  • Use tables provided to find hf and Dh

20
Calculations Cont.
  • Enthalpy of Formation values
  • Dhf,CO2 -393.5 kJ/mol
  • Dhf,H2O -241.8 kJ/mol
  • Dhf,N2 0 kJ/mol
  • Dh values
  • hCO2(Tprod) hCO2(Tref) 33.41 kJ/mol
  • hH2O(Tprod) hH2O(Tref) 25.98 kJ/mol
  • hN2(Tprod) hN2(Tref) 21.46 kJ/mol

21
Calculations Cont.
  • Total Enthalpy of each molecule h Dhf Dh
  • hCO2 -393.5 kJ/mol 33.41 kJ/mol -360.09
    kJ/mol
  • hH2O -241.8 kJ/mol 25.98 kJ/mol -215.82
    kJ/mol
  • hN2 0 kJ/mol 21.46 kJ/mol 21.46 kJ/mol
  • Total Enthalpy of Products
  • Hprod S(nihi)
  • Hprod (1) -360.09 (2) -215.82 (7.5) 21.46
  • Hprod -630.78 kJ

22
Calculations Cont.
  • Hprod ltlt Hreact Try Higher Temperature
    (2300 K)
  • hCO2 -393.5 kJ/mol 109.67 kJ/mol -283.83
    kJ/mol
  • hH2O -241.8 kJ/mol 88.29 kJ/mol -153.51
    kJ/mol
  • hN2 0 kJ/mol 67.01 kJ/mol 67.01 kJ/mol
  • Hprod S(nihi)
  • Hprod 1( 283.83) 2( 153.51) 7.5( 67.01)
  • Hprod -88.28 kJ

23
Calculations Cont.
  • Hprod lt Hreact Try Higher Temperature
    (2400 K)
  • hCO2 -393.5 kJ/mol 115.79 kJ/mol -277.71
    kJ/mol
  • hH2O -241.8 kJ/mol 93.60 kJ/mol -148.20
    kJ/mol
  • hN2 0 kJ/mol 70.65 kJ/mol 70.62 kJ/mol
  • Hprod S(nihi)
  • Hprod (1) 302.05 (2) -169.11 (7.5) 56.14
  • Hprod -44.46 kJ

24
Calculations Cont.
  • Interpolate to find proper value

25
Summary
  • Premixed and Diffusion Flames
  • Laminar
  • Turbulent
  • Combustion Chemistry
  • Balancing Chemical equations
  • First Law Energy Balance
  • Adiabatic Flame Temperature
  • Assumptions
  • Determination
  • Iteration

26
Homework Problem
  • Problem Statement Liquid Octane (C8H18) is
    burned at a constant pressure. The air and fuel
    are supplied at 298 K and 1 atm. Determine the
    adiabatic flame temperature for these conditions
    assuming complete combustion.
Write a Comment
User Comments (0)
About PowerShow.com