Title: TE 4103 SISTEM KOMUNIKASI BERGERAK Modul 13
1TE 4103 SISTEM KOMUNIKASI BERGERAKModul 13
14. Perencanaan System CellularCase Study 3G
System Design
Jurusan Teknik Elektro Program Studi S1 SEKOLAH
TINGGI TEKNOLOGI TELKOM 2006
2Conditions of 3G Planning
- Planning should meet current standards and
demands and also comply with future requirements. - Uncertainty of future traffic growth and service
needs. - High bit rate services require knowledge of
coverage and capacity enhancements methods. - Real constraints
- Coexistence and co-operation of 2G and 3G for old
operators. - Environmental constraints for new operators.
- Network planning depends not only on the coverage
but also on load.
3Objectives of the Planning
- Traffic Forecasting
- To measure the demand on targeted marked so as to
allow an appropriate growth of the Network. - Coverage
- To obtain the ability of the network ensure the
availability of the service in the entire service
area. - Capacity
- To support the subscriber traffic with
sufficiently low blocking and delay. - Quality
- Linking the capacity and the coverage and still
provide the required QoS. - Costs
- To enable an economical network implementation
when the service is established and a controlled
network expansion during the life cycle of the
network.
4Business Planning
- Marketing is responsible the revenue side and
must also produce a traffic forecast. - The engineering model must translate the traffic
forecast into a network plan and generate the
capex and opex numbers to be passed to the
financial model. - The financial model takes in information from
marketing, including key metrics, revenue
forecast, acquisition costs and capex, opex from
the engineering model.
5Financial model
- Capturing all the detail of the customer base
dynamics, the financial model allows the most
comprehensive and rigorous approach to
forecasting the cost base and ultimately a
valuation. - The financial model outputs are those used by
decision makers at board level and the financial
community. - The presentation pack produced by the financial
model provides a complete business case, which
takes the reader from an analysis of the
population through to a range of valuations. - The valuation of the business case is the
ultimate objective of the suite of models.
6The model combines inputs from the marketing and
the engineering models with operating cost
assumptions to forecast the financial statements
and free cash flow.
Engineering Models Network Opex and Capex
Forecasts
Market Forecast Model
Operational Structure, Distribution Channels,
Staffing etc.
Customers and Revenue Forecasts
Business Planning Model
Operating Cost Assumptions
Network Capex and Opex Forecast
All figures in Nominal Local Currency
Free Cash Flow in Nominal Local Currency
(Operating Cash Flow less Capital Expenditure)
7Marketing Model
What kind of Services do we offer?
Revenue Forecast
How many customers do we have?
How much are they willing to spend?
Traffic Forecast
What are our tariffs?
Essentially the question is how many customers
are there and what does the mobile operator has
to deliver for the money paid by those customers.
8Cost and Revenue Structure
9The Diversity of 3G Applications and Sources of
Billing
103G Tariff Dimensions for different Services
Packages
11Tariff Plans to Suit Market Segments and
Applications.
12Pendahuluan
Implementasi suatu jaringan telekomunikasi di
suatu wilayah disamping berhadapan dengan
regulasi telekomunikasi, juga akan berhadapan
dengan situasi pasar yang harus dipelajari dengan
seksama untuk mengantisipasi berbagai
kemungkinan. Di bawah ini adalah 3 tugas besar
yang harus dikerjakan seorang analis pasar ...
13Siklus Perencanaan Sistem Cellular
14Apa sesungguhnya peranan seorang engineer ?
Setelah menerima laporan dari analis ekonomi yang
meneliti kelayakan ekonomi, tugas seorang
engineer untuk mewujudkan jaringan yang andal
dari sisi kapasitas, kualitas dengan biaya
seefisien mungkin
15Lalu..
Sebelum merencanakan sistem, seorang engineer
harus memiliki pengetahuan yang mendalam mengenai
dasar-dasar teknologi selular, yang meliputi
struktur sel, channel asignment, cell splitting,
sistem sel overlay, pemrosesan panggilan, konsep
propagasi radio , dan berbagai prinsip lainnya.
Seperti yang sudah dijelaskan dimuka, bahwa
langkah pertama desain jaringan telekomunikasi
selalu berdasar tentang estimasi apa yang akan
terjadi pada masa datang terhadap jaringan yang
hendak direncanakan. Dalam hal ini prediksi
trafik telekomunikasi merupakan hal penting yang
pertamakali akan dilakukan. Filosofi umum dari
desain jaringan telekomunikasi adalah mendapatkan
performansi terbaik dengan minimal cost.
Performansi radio meliputi kualitas kanal fisik
untuk kontrol / signalling dan juga kanal fisik
suara. Dalam kaitan ini, ukuran dari kualitas
transmisi adalah S/(IN) atau biasa disebut RF
signal to impairement ratio. Seorang RF
enginner harus menganalisis 2 macam kondisi
(1), Pada kondisi yang terburuk, dan (2), Pada
kondisi rata-rata yang dicapai oleh jaringan yang
didesain. Dalam hal ini, kondisi performansi
rata-rata akan menunjukkan ukuran persepsi
pelanggan mengenai kualitas yang akhirnya
bermuara pada kepuasan pelanggan. Sedangkan
analisis kondisi terburuk adalah untuk mencegah
berbagai kasus terburuk yang mungkin akan
terjadi.
16Adalah cukup sulit untuk mencapai performansi
yang diharapkan pada lingkungan komunikasi
mobile yang sangat kompleks. Karena itu
diharapkan seorang engineer memiliki berbagai
pengetahuan untuk melakukan optimalisasi sistem
yang nantinya akan melibatkan berbagai solusi
kompromi dari berbagai kondisi trade off yang
nantinya akan dihadapi. Berbagai metoda
optimalisasi jaringan komunikasi bergerak seluler
ini diberikan pada bagian selanjutnya.
Tujuan Perencanaan Jaringan Selular...
- Kapasitas
- Coverage
- Kualitas
Goal
17Tujuan dari Perencanaan
Perencanaan jaringan dimulai dari alokasi lebar
pita frekuensi yang diberikan pemerintah kepada
suatu operator seluler. Alokasi lebar pita
frekuensi inilah yang digunakan oleh operator
untuk memberikan layanan komunikasi dengan
kualitas komunikasi yang sebaik-baiknya dan untuk
sebanyak-banyaknya user.
18Diagram Alir Perencanaan Sel
START
Kapasitas
Prediksi trafik yang dibutuhkan sampai dengan
beberapa tahun ke depan (Analisis statistik
demand)
Analisa kapasitas yang dibutuhkan Atot
(Erlang) Kapasitas sistem dari BW yang
dialokasikan Asel (Erlang / sel)
END
Kualitas
Yes
- OPTIMASI
- Threshold handover
- Daya Pancar
- Noise Figure, dll
KUALITAS OKE ?
No
Jumlah sel Atot /Asel (sel)
Analisa Pathloss Analisa Link Budget Perhitungan
Daya Frequency Planning
Coverage
19Traffic Forecasting
20Proses Cell Planning
- Proses sell planning dapat menggambarkan
semua kegiatan yang digunakan dalam proses
perencanaan cellular,dan mengkonfigurasikannya
sehingga sesuai dengan kondisi yang sebenarnya . - Cell planning dimulai dari menganalisa
trafik dan daerah cakupan yang dinginkan dengan
cara terlebih dulu mengetahui kondisi geografinya
serta jumlah yang dibutuhkan untuk mengcover
pelanggan. - Data yang dibutuhkan diantaranya
- Biaya
- Kapasitas
- Daerah cakupan
- Grade Of service (GoS)
- Frekuensi
- Speech Quality Index (SQI)
- System growth capability
- Kebutuhan traffic menggambarkan kondisi
dalam mendesain system yang ingin dirancang dan
mengkonfigurasikannya sehingga sesuai dengan
kondisi geografis dari daerah yang sebenarnya
tersebut. - Hal-hal yang perlu diperhatikan dalam hal
perkiraan kondisi geografis adalah - Jumlah penduduk
- Jumlah Pelanggan Telephone
- Level keuntungan
- Land usage data
- Pengguna telephone
- Dan faktor lainnya seperti harga ponsel
21Traffic Forecasting
- Penetration total subscribers
- Customers, gross adds, churn
- Voice, data and other source of revenues
- User growth joint up to maturity of the network.
- As initial works to measure the required capacity
22Demographic Anatomy of Targeted Market (i-th
year!)
23Propensity to Adopt Mobile Comm. by Age example
from Western European country Age is an
important discriminator.
A Western European country, sample 1,000
interviews 1997
24Correlation between propensity to adopt mobile
income example lower income country Income
matters.
A Far Eastern country, sample 1,500 interviews
1996
25Penetration Growth
- The potential demand assumptions should be linked
to changing demographic patterns and changes in
income. - The potential demand sets a penetration ceiling,
conceptually the maximum potential penetration is
the level at which the service life cycle curve
reaches its upper limit.
26Growth of Subscribers
27Traffic Growth
- e.g voice traffic/user 27 mErl which comprises
80 of total traffic, Data traffic/user 10 mErl
which is the rest of total traffic. Combined
average generated traffic per user is 23.1 mErl.
28The Traffic Data from the Marketing Model Drives
Network Dimensioning.
- Because the model is intended to be used in the
business-planning phase, it is essential that a
range of scenarios can be evaluated rapidly. - The impact of varying, for example, different
tariffs can be calculated instantly. - The engineering model can run completely in the
background so that business planners can run
scenarios without recourse to engineering.
29The Engineering Model covers Capex and Opex for
2G and 3G Networks.
- The capex and opex part of the 3G Mobile Toolkit
covers the technical aspects, including capital
and operational expenditures. - The scope of the 3G engineering model includes
dimensioning and costing for the following
elements - Radio network
- Core network interconnect
- Server network
30ENGINEERING MODEL
31Whats New on 3G
- Multiservice environment
- Highly sophisticated radio interface.
- Bit rates from 8 kbit/s to 2 Mbit/s, also
variable rate. - Cell coverage and service design for multiple
services - different bit rate
- different QoS requirements.
- Various radio link coding/throughput adaptation
schemes. - Interference averaging mechanisms
- need for maximum isolation between cells.
- Best effort provision of packet data.
- Intralayer handovers
32Whats New on 3G
- Air interface
- Capacity and coverage coupled.
- Fast power control.
- Planning a soft handover overhead.
- Cell dominance and isolation
- Vulnerability to external interference
33Whats New on 3G
- 2G and 3G
- Co-existence of 2G and 3G sites.
- Handover between 2G and 3G systems.
- Service continuity between 2G and 3G.
343G (WCDMA) Radio Network Planning Process
351st. Coverage
- coverage regions
- area type information
- Dense Urban, Urban, sub-urban, or rural
- propagation conditions
- Indoor, outdoor
36Radio Link Budgets (WCDMA)
- There are some WCDMA-specific parameters in the
link budget that are not used in a TDMA-based - Interference margin
- it is needed due to the traffic loading of the
cell. The more loading is allowed, the larger is
the interference margin needed in the uplink, and
the smaller is the coverage area. Typical values
for the interference margin are 1.03.0 dB,
corresponding to 2050 Cell loading. - Fast fading margin (power control headroom)
- Some headroom is needed in MS TX power for
maintaining adequate closed loop fast power
control to be able to effectively compensate the
fast fading. Typical values for the fast fading
margin are 2.05.0 dB for slow-moving MS. - Soft handover gain
- Soft handover gives an additional macro diversity
gain against fast fading by reducing the required
Eb/No relative to a single radio link. The soft
handover gain is assumed between 2.0 and 3.0 dB
37RLB Assumptions for MS and BS
MS
BS
38Example of WCDMA RLB for Voice
Link budget of AMR 12.2 kbps voice service (120
km/h, in-car users, Vehicular A type channel,
with soft handover)
39Example of WCDMA RLB for Data
Link budget of 144 kbps real-time data service (3
km/h, indoor user covered by outdoor BS,
Vehicular A type channel, with soft handover)
40Cell range calculation
41RLB Okumura-Hatta Model
- The propagation model describes the average
signal propagation in an environment, and it
converts the maximum allowed propagation loss in
dB on the row u to the maximum cell range in
kilometres.
42Maximum and Average Path Loss in Macro Cells
43Cell Range
- From the RLB above, the cell range R can be
calculated. e.g with the OkumuraHata propagation
model for an urban macro cell with base station
antenna height of 30 m, mobile antenna height of
1.5 m and carrier frequency of 1950 MHz - L 137.4 35.2 log10 (Rkm) ..Urban
- L 129.4 35.2 log10 (Rkm) Sub-Urban
44Cell Range
- From RLB above, MAPL for 12.2 kbps voice service
is 141.9 dB - Urban Rcell 1.34 km
- Sub-urban Rcell 2.27 km
- For 144 kbps data service with MAPL 133.8 dB
- Urban Rcell 0.79 km
- Sub-urban Rcell 1.33 km
452nd. Capacity
- Spectrum availability
- Subscriber growth forecast
- Traffic density information to estimate the
amount of supported traffic per base station
site.
463th. Quality of Service
- Area location probability (coverage
probability) - Blocking probability
- End user throughput.
473G W-CDMA Capacity (1)
483G W-CDMA Capacity (2)
49Uplink Load Factor
50Downlink Load Factor
51Noise Rise Capacity
- The load equation predicts the amount of noise
rise over thermal noise due to interference. - The noise rise is equal to -10log10(1 hUL).
- The interference margin on row i in the link
budget must be equal to the maximum planned noise
rise.
52Example (DL) Load Factor Calculation
- Assume the required aggregate cell throughput in
kbps. Through-put is equal to the number of users
Nx(bit rate R)x(1 - BLER). - Calculate load factor DL from Equation above.
- Calculate average path loss from RLB.
- Calculate maximum path loss by adding 6 dB.
53Maximum Path Loss Calculations for Data
Transmission
54Capacity vs Coverage
55Base Station Transmission Power
- The minimum required transmission power for each
user is determined by the average attenuation
between base station transmitter and mobile
receiver, L, and the mobile receiver sensitivity,
in the absence of multiple access interference
(intra- or inter-cell). Then the effect of noise
rise due to interference is added to this minimum
power and the total represents the transmission
power required for a user at an average
location in the cell. Mathe-matically, the total
base station transmission power can be expressed
by the followingequation
56Effect of BS TX Power to DL Capacity and Coverage
57Capacity per Subscriber
- Capacity depends on AMR rate (voice) and data
rate for the associated Eb/No. - e.g. 5 MHz W-CDMA carrier capacity is 800
kbps/cell or 80 voice channels/cell, Downlink
Packet Access (HSDPA) carrier capacity is 2000
kbps/cell. - Cell capacity utilisation is 80 during busy
hours - Busy hour carries 20 of daily traffic.
- 1000 subscribers per site
- 3 sectors per site, 2 carrier (i.e 10MHz),
Config. 222
58Capacity per Subscriber
- Uplink
- Equivalent with 1725 minutes/Subc./month
- Downlink Packet Access
- 650 MB/Subc./Month
- With split 50/50, we get 325 MB 862
min/subc./month
59Typical Capacity of W-CDMA
- Capacities per km2 with macro and micro layers
in an urban area
60Iteration of Capacity and Coverage Calculations
61Case Study Planning in Espoo, Finland
- Please refer to
- Hari Holma Antti Toskala, WCDMA for UMTS,
3rd Ed., John Wiley Son, 2004, p.210 214. - Course Work Make a resume from that section!
Submit due to the end of Semester (before UAS).
62Network Optimisation
- Network optimisation is a process to improve the
overall network quality as experienced by the
mobile subscribers and to ensure that network
resources are used efficiently. Optimisation
includes - Performance measurements.
- Analysis of the measurement results.
- Updates in the network configuration and
parameters.
63Network Optimisation Process
64Network Performance Measurements
65Network Tuning with Antenna Tilts
66GSM - WCDMA Co-Planning
- Utilisation of existing base station sites is
important in speeding up WCDMA deployment and in
sharing sites and transmission costs with the
existing GSM networks. The feasibility of sharing
sites depends on the relative coverage of the
existing network compared to WCDMA. Typical
maximum path losses with existing GSM and with
WCDMA
67Co-siting of GSM and WCDMA
- Since the coverage of WCDMA typically is
satisfactory when reusing GSM sites, GSM site
reuse is the preferred solution in practice. - The co-siting of GSM and WCDMA is taken into
account in 3GPP performance requirements and the
interference between the systems can be avoided. - Co-sited WCDMA and GSM systems can share the
antenna when a dual band or wideband antenna is
used. The antenna needs to cover both the GSM
band and UMTS band. GSM and WCDMA signals are
combined with a diplexer to the common antenna
feeder. - The shared antenna solution is attractive from
the site solution point of view but it limits the
flexibility in optimising the antenna directions
of GSM and WCDMA independently. - Another co-siting solution is to use separate
antennas for the two networks. That solution
gives full flexibility in optimising the networks
separately.
68Co-siting of GSM and WCDMA