TE 4103 SISTEM KOMUNIKASI BERGERAK Modul 13 - PowerPoint PPT Presentation

1 / 68
About This Presentation
Title:

TE 4103 SISTEM KOMUNIKASI BERGERAK Modul 13

Description:

High bit rate services require knowledge of coverage and capacity enhancements methods. ... Through-put is equal to the number of users Nx(bit rate R)x(1 - BLER) ... – PowerPoint PPT presentation

Number of Views:718
Avg rating:3.0/5.0
Slides: 69
Provided by: ukekur
Category:

less

Transcript and Presenter's Notes

Title: TE 4103 SISTEM KOMUNIKASI BERGERAK Modul 13


1
TE 4103 SISTEM KOMUNIKASI BERGERAKModul 13
14. Perencanaan System CellularCase Study 3G
System Design
Jurusan Teknik Elektro Program Studi S1 SEKOLAH
TINGGI TEKNOLOGI TELKOM 2006
2
Conditions of 3G Planning
  • Planning should meet current standards and
    demands and also comply with future requirements.
  • Uncertainty of future traffic growth and service
    needs.
  • High bit rate services require knowledge of
    coverage and capacity enhancements methods.
  • Real constraints
  • Coexistence and co-operation of 2G and 3G for old
    operators.
  • Environmental constraints for new operators.
  • Network planning depends not only on the coverage
    but also on load.

3
Objectives of the Planning
  • Traffic Forecasting
  • To measure the demand on targeted marked so as to
    allow an appropriate growth of the Network.
  • Coverage
  • To obtain the ability of the network ensure the
    availability of the service in the entire service
    area.
  • Capacity
  • To support the subscriber traffic with
    sufficiently low blocking and delay.
  • Quality
  • Linking the capacity and the coverage and still
    provide the required QoS.
  • Costs
  • To enable an economical network implementation
    when the service is established and a controlled
    network expansion during the life cycle of the
    network.

4
Business Planning
  • Marketing is responsible the revenue side and
    must also produce a traffic forecast.
  • The engineering model must translate the traffic
    forecast into a network plan and generate the
    capex and opex numbers to be passed to the
    financial model.
  • The financial model takes in information from
    marketing, including key metrics, revenue
    forecast, acquisition costs and capex, opex from
    the engineering model.

5
Financial model
  • Capturing all the detail of the customer base
    dynamics, the financial model allows the most
    comprehensive and rigorous approach to
    forecasting the cost base and ultimately a
    valuation.
  • The financial model outputs are those used by
    decision makers at board level and the financial
    community.
  • The presentation pack produced by the financial
    model provides a complete business case, which
    takes the reader from an analysis of the
    population through to a range of valuations.
  • The valuation of the business case is the
    ultimate objective of the suite of models.

6
The model combines inputs from the marketing and
the engineering models with operating cost
assumptions to forecast the financial statements
and free cash flow.
Engineering Models Network Opex and Capex
Forecasts
Market Forecast Model
Operational Structure, Distribution Channels,
Staffing etc.
Customers and Revenue Forecasts
Business Planning Model
Operating Cost Assumptions
Network Capex and Opex Forecast
All figures in Nominal Local Currency
Free Cash Flow in Nominal Local Currency
(Operating Cash Flow less Capital Expenditure)
7
Marketing Model
What kind of Services do we offer?
Revenue Forecast
How many customers do we have?
How much are they willing to spend?
Traffic Forecast
What are our tariffs?
Essentially the question is how many customers
are there and what does the mobile operator has
to deliver for the money paid by those customers.
8
Cost and Revenue Structure
9
The Diversity of 3G Applications and Sources of
Billing
10
3G Tariff Dimensions for different Services
Packages
11
Tariff Plans to Suit Market Segments and
Applications.
12
Pendahuluan
Implementasi suatu jaringan telekomunikasi di
suatu wilayah disamping berhadapan dengan
regulasi telekomunikasi, juga akan berhadapan
dengan situasi pasar yang harus dipelajari dengan
seksama untuk mengantisipasi berbagai
kemungkinan. Di bawah ini adalah 3 tugas besar
yang harus dikerjakan seorang analis pasar ...
13
Siklus Perencanaan Sistem Cellular
14
Apa sesungguhnya peranan seorang engineer ?
Setelah menerima laporan dari analis ekonomi yang
meneliti kelayakan ekonomi, tugas seorang
engineer untuk mewujudkan jaringan yang andal
dari sisi kapasitas, kualitas dengan biaya
seefisien mungkin
15
Lalu..
Sebelum merencanakan sistem, seorang engineer
harus memiliki pengetahuan yang mendalam mengenai
dasar-dasar teknologi selular, yang meliputi
struktur sel, channel asignment, cell splitting,
sistem sel overlay, pemrosesan panggilan, konsep
propagasi radio , dan berbagai prinsip lainnya.
Seperti yang sudah dijelaskan dimuka, bahwa
langkah pertama desain jaringan telekomunikasi
selalu berdasar tentang estimasi apa yang akan
terjadi pada masa datang terhadap jaringan yang
hendak direncanakan. Dalam hal ini prediksi
trafik telekomunikasi merupakan hal penting yang
pertamakali akan dilakukan. Filosofi umum dari
desain jaringan telekomunikasi adalah mendapatkan
performansi terbaik dengan minimal cost.
Performansi radio meliputi kualitas kanal fisik
untuk kontrol / signalling dan juga kanal fisik
suara. Dalam kaitan ini, ukuran dari kualitas
transmisi adalah S/(IN) atau biasa disebut RF
signal to impairement ratio. Seorang RF
enginner harus menganalisis 2 macam kondisi
(1), Pada kondisi yang terburuk, dan (2), Pada
kondisi rata-rata yang dicapai oleh jaringan yang
didesain. Dalam hal ini, kondisi performansi
rata-rata akan menunjukkan ukuran persepsi
pelanggan mengenai kualitas yang akhirnya
bermuara pada kepuasan pelanggan. Sedangkan
analisis kondisi terburuk adalah untuk mencegah
berbagai kasus terburuk yang mungkin akan
terjadi.
16
Adalah cukup sulit untuk mencapai performansi
yang diharapkan pada lingkungan komunikasi
mobile yang sangat kompleks. Karena itu
diharapkan seorang engineer memiliki berbagai
pengetahuan untuk melakukan optimalisasi sistem
yang nantinya akan melibatkan berbagai solusi
kompromi dari berbagai kondisi trade off yang
nantinya akan dihadapi. Berbagai metoda
optimalisasi jaringan komunikasi bergerak seluler
ini diberikan pada bagian selanjutnya.
Tujuan Perencanaan Jaringan Selular...
  • Kapasitas
  • Coverage
  • Kualitas

Goal
17
Tujuan dari Perencanaan
Perencanaan jaringan dimulai dari alokasi lebar
pita frekuensi yang diberikan pemerintah kepada
suatu operator seluler. Alokasi lebar pita
frekuensi inilah yang digunakan oleh operator
untuk memberikan layanan komunikasi dengan
kualitas komunikasi yang sebaik-baiknya dan untuk
sebanyak-banyaknya user.
18
Diagram Alir Perencanaan Sel
START
Kapasitas
Prediksi trafik yang dibutuhkan sampai dengan
beberapa tahun ke depan (Analisis statistik
demand)
Analisa kapasitas yang dibutuhkan Atot
(Erlang) Kapasitas sistem dari BW yang
dialokasikan Asel (Erlang / sel)
END
Kualitas
Yes
  • OPTIMASI
  • Threshold handover
  • Daya Pancar
  • Noise Figure, dll

KUALITAS OKE ?
No
Jumlah sel Atot /Asel (sel)
Analisa Pathloss Analisa Link Budget Perhitungan
Daya Frequency Planning
Coverage
19
Traffic Forecasting
20
Proses Cell Planning
  • Proses sell planning dapat menggambarkan
    semua kegiatan yang digunakan dalam proses
    perencanaan cellular,dan mengkonfigurasikannya
    sehingga sesuai dengan kondisi yang sebenarnya .
  • Cell planning dimulai dari menganalisa
    trafik dan daerah cakupan yang dinginkan dengan
    cara terlebih dulu mengetahui kondisi geografinya
    serta jumlah yang dibutuhkan untuk mengcover
    pelanggan.
  • Data yang dibutuhkan diantaranya
  • Biaya
  • Kapasitas
  • Daerah cakupan
  • Grade Of service (GoS)
  • Frekuensi
  • Speech Quality Index (SQI)
  • System growth capability
  • Kebutuhan traffic menggambarkan kondisi
    dalam mendesain system yang ingin dirancang dan
    mengkonfigurasikannya sehingga sesuai dengan
    kondisi geografis dari daerah yang sebenarnya
    tersebut.
  • Hal-hal yang perlu diperhatikan dalam hal
    perkiraan kondisi geografis adalah
  • Jumlah penduduk
  • Jumlah Pelanggan Telephone
  • Level keuntungan
  • Land usage data
  • Pengguna telephone
  • Dan faktor lainnya seperti harga ponsel

21
Traffic Forecasting
  • Penetration total subscribers
  • Customers, gross adds, churn
  • Voice, data and other source of revenues
  • User growth joint up to maturity of the network.
  • As initial works to measure the required capacity

22
Demographic Anatomy of Targeted Market (i-th
year!)
23
Propensity to Adopt Mobile Comm. by Age example
from Western European country Age is an
important discriminator.
A Western European country, sample 1,000
interviews 1997
24
Correlation between propensity to adopt mobile
income example lower income country Income
matters.
A Far Eastern country, sample 1,500 interviews
1996
25
Penetration Growth
  • The potential demand assumptions should be linked
    to changing demographic patterns and changes in
    income.
  • The potential demand sets a penetration ceiling,
    conceptually the maximum potential penetration is
    the level at which the service life cycle curve
    reaches its upper limit.

26
Growth of Subscribers
27
Traffic Growth
  • e.g voice traffic/user 27 mErl which comprises
    80 of total traffic, Data traffic/user 10 mErl
    which is the rest of total traffic. Combined
    average generated traffic per user is 23.1 mErl.

28
The Traffic Data from the Marketing Model Drives
Network Dimensioning.
  • Because the model is intended to be used in the
    business-planning phase, it is essential that a
    range of scenarios can be evaluated rapidly.
  • The impact of varying, for example, different
    tariffs can be calculated instantly.
  • The engineering model can run completely in the
    background so that business planners can run
    scenarios without recourse to engineering.

29
The Engineering Model covers Capex and Opex for
2G and 3G Networks.
  • The capex and opex part of the 3G Mobile Toolkit
    covers the technical aspects, including capital
    and operational expenditures.
  • The scope of the 3G engineering model includes
    dimensioning and costing for the following
    elements
  • Radio network
  • Core network interconnect
  • Server network

30
ENGINEERING MODEL
31
Whats New on 3G
  • Multiservice environment
  • Highly sophisticated radio interface.
  • Bit rates from 8 kbit/s to 2 Mbit/s, also
    variable rate.
  • Cell coverage and service design for multiple
    services
  • different bit rate
  • different QoS requirements.
  • Various radio link coding/throughput adaptation
    schemes.
  • Interference averaging mechanisms
  • need for maximum isolation between cells.
  • Best effort provision of packet data.
  • Intralayer handovers

32
Whats New on 3G
  • Air interface
  • Capacity and coverage coupled.
  • Fast power control.
  • Planning a soft handover overhead.
  • Cell dominance and isolation
  • Vulnerability to external interference

33
Whats New on 3G
  • 2G and 3G
  • Co-existence of 2G and 3G sites.
  • Handover between 2G and 3G systems.
  • Service continuity between 2G and 3G.

34
3G (WCDMA) Radio Network Planning Process
35
1st. Coverage
  • coverage regions
  • area type information
  • Dense Urban, Urban, sub-urban, or rural
  • propagation conditions
  • Indoor, outdoor

36
Radio Link Budgets (WCDMA)
  • There are some WCDMA-specific parameters in the
    link budget that are not used in a TDMA-based
  • Interference margin
  • it is needed due to the traffic loading of the
    cell. The more loading is allowed, the larger is
    the interference margin needed in the uplink, and
    the smaller is the coverage area. Typical values
    for the interference margin are 1.03.0 dB,
    corresponding to 2050 Cell loading.
  • Fast fading margin (power control headroom)
  • Some headroom is needed in MS TX power for
    maintaining adequate closed loop fast power
    control to be able to effectively compensate the
    fast fading. Typical values for the fast fading
    margin are 2.05.0 dB for slow-moving MS.
  • Soft handover gain
  • Soft handover gives an additional macro diversity
    gain against fast fading by reducing the required
    Eb/No relative to a single radio link. The soft
    handover gain is assumed between 2.0 and 3.0 dB

37
RLB Assumptions for MS and BS
MS
BS
38
Example of WCDMA RLB for Voice
Link budget of AMR 12.2 kbps voice service (120
km/h, in-car users, Vehicular A type channel,
with soft handover)
39
Example of WCDMA RLB for Data
Link budget of 144 kbps real-time data service (3
km/h, indoor user covered by outdoor BS,
Vehicular A type channel, with soft handover)
40
Cell range calculation
41
RLB Okumura-Hatta Model
  • The propagation model describes the average
    signal propagation in an environment, and it
    converts the maximum allowed propagation loss in
    dB on the row u to the maximum cell range in
    kilometres.

42
Maximum and Average Path Loss in Macro Cells
43
Cell Range
  • From the RLB above, the cell range R can be
    calculated. e.g with the OkumuraHata propagation
    model for an urban macro cell with base station
    antenna height of 30 m, mobile antenna height of
    1.5 m and carrier frequency of 1950 MHz
  • L 137.4 35.2 log10 (Rkm) ..Urban
  • L 129.4 35.2 log10 (Rkm) Sub-Urban

44
Cell Range
  • From RLB above, MAPL for 12.2 kbps voice service
    is 141.9 dB
  • Urban Rcell 1.34 km
  • Sub-urban Rcell 2.27 km
  • For 144 kbps data service with MAPL 133.8 dB
  • Urban Rcell 0.79 km
  • Sub-urban Rcell 1.33 km

45
2nd. Capacity
  • Spectrum availability
  • Subscriber growth forecast
  • Traffic density information to estimate the
    amount of supported traffic per base station
    site.

46
3th. Quality of Service
  • Area location probability (coverage
    probability)
  • Blocking probability
  • End user throughput.

47
3G W-CDMA Capacity (1)
48
3G W-CDMA Capacity (2)
49
Uplink Load Factor
  • Load Factor

50
Downlink Load Factor
51
Noise Rise Capacity
  • The load equation predicts the amount of noise
    rise over thermal noise due to interference.
  • The noise rise is equal to -10log10(1 hUL).
  • The interference margin on row i in the link
    budget must be equal to the maximum planned noise
    rise.

52
Example (DL) Load Factor Calculation
  • Assume the required aggregate cell throughput in
    kbps. Through-put is equal to the number of users
    Nx(bit rate R)x(1 - BLER).
  • Calculate load factor DL from Equation above.
  • Calculate average path loss from RLB.
  • Calculate maximum path loss by adding 6 dB.

53
Maximum Path Loss Calculations for Data
Transmission
54
Capacity vs Coverage
55
Base Station Transmission Power
  • The minimum required transmission power for each
    user is determined by the average attenuation
    between base station transmitter and mobile
    receiver, L, and the mobile receiver sensitivity,
    in the absence of multiple access interference
    (intra- or inter-cell). Then the effect of noise
    rise due to interference is added to this minimum
    power and the total represents the transmission
    power required for a user at an average
    location in the cell. Mathe-matically, the total
    base station transmission power can be expressed
    by the followingequation

56
Effect of BS TX Power to DL Capacity and Coverage
57
Capacity per Subscriber
  • Capacity depends on AMR rate (voice) and data
    rate for the associated Eb/No.
  • e.g. 5 MHz W-CDMA carrier capacity is 800
    kbps/cell or 80 voice channels/cell, Downlink
    Packet Access (HSDPA) carrier capacity is 2000
    kbps/cell.
  • Cell capacity utilisation is 80 during busy
    hours
  • Busy hour carries 20 of daily traffic.
  • 1000 subscribers per site
  • 3 sectors per site, 2 carrier (i.e 10MHz),
    Config. 222

58
Capacity per Subscriber
  • Uplink
  • Equivalent with 1725 minutes/Subc./month
  • Downlink Packet Access
  • 650 MB/Subc./Month
  • With split 50/50, we get 325 MB 862
    min/subc./month

59
Typical Capacity of W-CDMA
  • Capacities per km2 with macro and micro layers
    in an urban area

60
Iteration of Capacity and Coverage Calculations
61
Case Study Planning in Espoo, Finland
  • Please refer to
  • Hari Holma Antti Toskala, WCDMA for UMTS,
    3rd Ed., John Wiley Son, 2004, p.210 214.
  • Course Work Make a resume from that section!
    Submit due to the end of Semester (before UAS).

62
Network Optimisation
  • Network optimisation is a process to improve the
    overall network quality as experienced by the
    mobile subscribers and to ensure that network
    resources are used efficiently. Optimisation
    includes
  • Performance measurements.
  • Analysis of the measurement results.
  • Updates in the network configuration and
    parameters.

63
Network Optimisation Process
64
Network Performance Measurements
65
Network Tuning with Antenna Tilts
66
GSM - WCDMA Co-Planning
  • Utilisation of existing base station sites is
    important in speeding up WCDMA deployment and in
    sharing sites and transmission costs with the
    existing GSM networks. The feasibility of sharing
    sites depends on the relative coverage of the
    existing network compared to WCDMA. Typical
    maximum path losses with existing GSM and with
    WCDMA

67
Co-siting of GSM and WCDMA
  • Since the coverage of WCDMA typically is
    satisfactory when reusing GSM sites, GSM site
    reuse is the preferred solution in practice.
  • The co-siting of GSM and WCDMA is taken into
    account in 3GPP performance requirements and the
    interference between the systems can be avoided.
  • Co-sited WCDMA and GSM systems can share the
    antenna when a dual band or wideband antenna is
    used. The antenna needs to cover both the GSM
    band and UMTS band. GSM and WCDMA signals are
    combined with a diplexer to the common antenna
    feeder.
  • The shared antenna solution is attractive from
    the site solution point of view but it limits the
    flexibility in optimising the antenna directions
    of GSM and WCDMA independently.
  • Another co-siting solution is to use separate
    antennas for the two networks. That solution
    gives full flexibility in optimising the networks
    separately.

68
Co-siting of GSM and WCDMA
Write a Comment
User Comments (0)
About PowerShow.com