Title: Access Codes
1Access Codes
2content
- Permutation Codes
- Random Access bounds
- 3. Random Access Codes
- 4. Optical Orthogonal Codes
3PERMUTATION CODES
- Impulsive noise, broadcast, background
- Random access codes
4Typical noise situation
Narrow band (permanent) Broad band (single
impulse) Broad narrow band
5idea
Transmit messages as ? sequences (code words)
of length M where all M symbols are
different ? minimum distance ( of
differences) D
Example M 3 D 2 Code 123 312 231
132 321 213
f
time
6Communication structure example
( 3,2,1 )
encoder
modulator
message
t
M-FSK or PPM
f
Time and frequency diversity !
t
3 Energy detectors
f
7Non-coherent detection (FFT)
Envelope detector
y1
filter matched to f1
1
Quantize gt Th 1 lt Th 0
Envelope detector
y2
filter matched to f2
0
X
???
???
Envelope detector
yM
0
filter matched to fM
sample
1 0 0 0
Detect Presence of code sequence
0 0 1 0
0 1 0 0
0 0 0 1
8Non-coherent detection Quadrature receiver
using correlators
()2
cos2?fit
?
sin2?fit
()2
9Non-coherent detection performance
- Decoder outputs sequence at minimum distance
- Error if noise generates valid sequence
- Advantage time and frequency diversity
- robusts against Broad- and narrowband noise
1 0 0 0
1 0 1 0
Detect Presence of code sequence
0 0 1 0
0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 1
0 0 1 1
102 Code words M 5 at D 3
C1 1,2,4,3,5 C2 1,2,3,5,4
frequency
time
11 narrow band noise
C1 1,2,4,3,5
frequency
Narrow band
time
12 broad band noise (impulse)
broad band
C1 1,2,4,3,5
frequency
time
13 background noise
C1 1,2,4,3,- C2 1,2,-,5,4 Both code words 4
agreements!
frequency
insert delete
time
14Performance minimum distance decoding
- NOTE Sequences have minimum distance D
- Errors agree with sequences in only 1 positions
- gt D-1 errors are needed to create another
sequence - If E correct symbols disappear due to background
noise - gt D-1-E errors are needed to create decoding
errors
15Upperbound on cardinality
- Order codewords specified by set of M-D symbols
- Set 1 1, 2, x, x, x 2, 1, x, x, x
- Set 2 x, 1, x, 2, x x, 2, x, 1, x
- Set 3 x. 1, 2, x, x x, 2, 1, x, x
- etc.
- For distance D, set constains ? (M-D)! D
codewords - There are different sets.
- Hence
16Code parameters (1)
- We showed that
- Q1 when do we achieve equality?
- Q2 if not, what is the upperbound
- References
- -Ian Blake, Permutation codes for discrete
channels (1975, IT) - -P. Frankl and M. Deza, On the max. of
Permutations with - given Max. Or Min. Distance (19977, Jrnl of
Comb. Th.)
17Code parameters (2)
- Simple code constructions D 2, 3, M
- all cases M lt 7 solved
- Interesting cases left ?
D 2 3 4 5 6 7 6 x x x 18
x C 18 is the Klöve (2000) result 7 x x
? ? x x 8 x x ? ? x x
9 x x ? ? ? x 10 x x ? ?
? ?
18Simple codes D M
- Cyclic permutation of M integers has D M
- C M! / (M-1)! M
- Example 1 2 3
- 3 1 2
- 2 3 1
19Simple codes D 2
- The code with all M! permutation has D 2
- C M! / (2-1)! M!
- Proof
- All symbols are different
- Codewords differ in at least 2 positions
- x x a x x x b x
- x x b x x x a x
20Simple codes D M-1
- Construction for prime P example M 3
- - starting sets B 0 1 2
- 2B 0 2 1
- - add constant vector
- B 0 ? 0 1 2 2B 0 ? 0 2 1
- B 1 ? 1 2 0 2B 1 ? 1 0 2
- B 2 ? 2 0 1 2B 2 ? 2 1 0
- In general C M!/(M-2)! M(M-1)
2
3
21Random access codes
22(No Transcript)
23Optical access model
tr 1
rec 1
tr 2
rec 2
????
OR
????
rec T
tr T
We want Uncoordinated and Random Access
24Time division central control
N users
????
inefficient, when small active
users synchronous easy
25Code division synchronized
0
Code division efficient, but complex
1
signature
26Several possibilities
A
or
0
B
or
shifted
C
or
another
27Superimposed codes
? T code words should not produce a valid code
word
T words Valid word
N
n
? ? N ? ?
28bounds
Lower bound
combinations
for large N superimposed signatures exist s.t.
T log2 N lt n lt 3 T2 log2 N
Obvious for T out of N items
29 Example T ? 2, n 9, N 12 User signature 1
001 001 010 2 001 010 100 3 001 100
001 4 010 001 100 5 010 010 001 6 010 100
010 7 100 001 001 8 100 010 010 9 100 100
100 10 000 000 111 11 000 111 000 12 111
000 000
R 2/9 TDMA gives R 2/12 Example 011 101
101 x OR y ?
30Example packet transmission
31(No Transcript)
32(sync) Binary access model (contd)
In Out
OR
33(No Transcript)
34For PPM make access model M-ary
tr 1
rec 1
tr 2
rec 2
????
OR
????
rec T
tr T
35Maximum throughput
Normalized SUM throughput 0.69
bits/channel use Note we have M-channels
available Hence PPM does not reduce efficiency!
-On the Capacity of the Asynchronous T-User
M-frequency noislesss Multiple Access Channel
IEEE Trans. on Information Theory, pp. 2235-2238,
November 1996. (A.J. Han Vinck and Jeroen
Keuning)
36Low density signaling
37M-FSK multi-access (cont)
- Sender 1 1,2, ? ? ?, M
- Sender 2 1,2, ? ? ?, M
- ? ? ? Y 2M -1
- Sender N 1,2, ? ? ?, M SUM CAPACITY ? M-1
bits/transm. - Example for M 3 input 1, 2, 3 output
(1), (2), (3), (1,3), (1,2), (2,3), (1,2,3) -
- Simple time sharing gives R log2
M bits/transm.
38M-FSK multi-access (cont)
- Capacity obtaining group time sharing!
- User M2 M 3 (2bits/tr) M
4 (3 bits/tr.) - I 0 1 0 1 0 1
- I1 0 2 0 2
- I2 0 3
- Output (0),(1) (0,1),(0,2),(1,2)
(0,1),(0,2),(1,2) - Y (0) (0), (1,2,3)
- (0,1,2),(0,1,3),(0,2,3)
Group I
39Frequency hopping 1 (many variations)
1 0
f
Symbol time
Hopping period
40Frequency hopping 2
1
0
f
t
Symbol time
Hopping period
Different hopping patterns
41Frequency hopping 3
f
Slow hopping
t
01 11 10 00
f
fast hopping
t
01 11 10 00
42advantages
- FH avoids tone jammers
-
- FH applies usually noncoherent modulation
- the hopping span can be very large
- FH is an avoidance system does not suffer on
near-far effect!
43(No Transcript)
44(No Transcript)
45(No Transcript)
46Non-coherent detection
Envelope detector
y1
filter matched to f1
1
Quantize gt Th 1 lt Th 0
Envelope detector
y2
filter matched to f2
0
X
???
???
Envelope detector
yM
0
filter matched to fM
sample
1 0 0 0
Detect Presence of signature
0 0 1 0
0 1 0 0
0 0 0 1
47(No Transcript)
48Transmission model
Every user has a signature of length n Example n
4, M 3 3 2 2
1 1 send signature 0 send no pulses
49Channel model
tr 1
rec 1
tr 2
rec 2
????
OR
????
rec T
tr T
50M-ary random access codes
T words Valid word
T
N
n
OR of ? T signatures does not produce a non
transmitting valid signature
51Example
3 1 1 2 1 1 1 3 1 1 2 1 1 1 3 1 1 2
3 users produce (3,2,1), (1,3), (1) No
other signature covered Signatures uniquely
detectable!
N
M
N ? M(M-1)
52Example
2 users may transmit 1 bit of info at the same
time
User 1 112 or 222 User 2 121 or 222 User 3
211 or 222 User 4 122 or 222
Sum rate 2/6 RTDMA 2/8
Example receive (1), (1,2), 2 ?
53UWB signal emission spectrum mask ( 3.1-10.6 GHz
) Signal bandwidth gt 500 MHz
54Pulsed transmission UWB
Example On-Off keying
binary
1 0 1 0
55Pulsed transmission UWB
0 1
PPM
lt nS
Nominal pulse position
56Error correcting codes as Multi-user access codes
57M-ary Error Correcting Codes
minimum number of differences dmin n -
maximum number of agreements
No covering for T users if T ( n - dmin )
lt n i.e. At least one position not covered!
58example Reed Solomon
Code property M 8, n 7, k 4, dmin 4
Then T ( 7 4 ) lt 7 or T ? 2 Conclusion
Total number of users N 84 T ? 2 active
users can be detected Data rate R ? 2/Mn 2/56
59Permutation codes
Transmit signatures as ? sequences (code words)
of length M where all M symbols are
different ? minimum distance ( of
differences) D
Example M 3 D 2 Code 123 312 231
132 321 213
f
time
60Interference property
For minimum distance D M-1
difference C M(M-1) Maximum
interference M - D 1 agreement CONCLUSIO
N lt M users uniquely detectable always one
unique position left
61Code shortening
Minimum distance M-1 length M Reducing word
length to n, reduced minimum distance to
n-1! CHECK!
62M code words per user
M code words
???
dmin M
n ? M
M-1 users T active dmin M-1
63Example M 3
1 2 0 1 0 2 2 1 0 2 0 1 0 1 2 0 2 1
6 users lt3 active dmin 2 n - dmin 1
Rsuperimposed 2/9 RTDMA 2log23/18
User 1 1 2 0 or 0 0 0
( (1,0), 2, (1,0) ?
64Example M 5
0 1 2 0 2 4 0 3 1 0 4 3 1 2 3 1 3 0 1
4 2 1 0 4 2 3 4 2 4 1 2 0 3 2 1 0 3 4 0
3 0 2 3 1 4 3 2 1 4 0 1 4 1 3 4 2 0
4 3 2
4 users ? 2 active dmin 2 n - dmin
1 Rsuperimposed 2log25/15 RTDMA 2log25/20
Codewords for user 4
65Code partitioning A lt n M users D n-1
n
n
n
???
M
???
???
???
User 1
User 2
User M-1
differences n-1 ? agreements (
interference ) 1 ? Pe 0! ? lt n active users
can never create a non participating
signature! Normalized sum rate same as single
user!
66Simple code using permutation codes(Titlebaum)
- M prime calculations modulo M
- M-1 Users 0 lt Ilt M
- Message 0 ? m lt M
- n ? M
- encode message m for user I gt o as
- CI(m) ( m , I ) 1 1 ? ? ? 1
- 0 1 ? ? ? n-1
- signature
- CI(m) is a permutation code word for a code with
D n-1
67example
- M 5, n 3 user 2
- Decoding for user I check for I m
( 3, 2 ) 1 1 1 ( 3, 0, 2 )
0 1 2
68Error probability for n ? A ? M active users
Note R(TDMA)
69(No Transcript)
70(No Transcript)
71(No Transcript)