Cryptology - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Cryptology

Description:

Cryptology. Harriet Muncey. Encryption. What? Why? Classical Cryptography. Enigma ... Enigma. Rotor 1. Rotor 2. Rotor 3. Reflector. Keyboard. Indicator Light ... – PowerPoint PPT presentation

Number of Views:836
Avg rating:3.0/5.0
Slides: 15
Provided by: harriet63
Category:

less

Transcript and Presenter's Notes

Title: Cryptology


1
Cryptology
  • Harriet Muncey

2
Encryption
  • What? Why?
  • Classical Cryptography
  • Enigma
  • Internet Encryption Public Key
  • RSA Algorithm
  • Cryptology in the Classroom

3
Why?
4
Caesar Cipher
  • shift each letter in the text cyclically k
    places in the alphabet
  • HELLO becomes MJQQT
  • c E(m) (m k) (mod 26), 0 k 26
  • D(c) (m - k) (mod 26) m

5
Frequency Analysis
6
Vigenère
  • keyword (of length r)
  • apply r separate Caesar ciphers periodically
  • E (mi) mi ki (mod r) (mod 26)

7
Enigma
Keyboard
Indicator Light
Rotor 1
Rotor 2
Rotor 3
Reflector
Key (i) Choice and order of rotors
(ii) Their initial position (iii) Fixed
initial permutation of the alphabet
8
Internet Encryption Public Key
  • Mathematically linked keys generated from a large
    random number
  • Asymmetric Cryptosystem solves problem of key
    distribution
  • Security relies on adversary having limited
    computational power
  • Hybrid System
  • Alice

Public Key
Private Key
9
Sending a Message
Bob encrypts the message
Plain Text
Alices Public Key
Cipher Text
Plain Text
Alices Private Key
Alice decrypts the message
10
RSA Algorithm
  • Two distinct large primes p, q
  • Public modulus n pq
  • Public exponent e
  • coprime to f(n) ( p 1)(
    q 1)
  • Exists unique 1 lt d lt f(n)
  • satisfying ed 1 mod
    f(n)

Private Key d
Public Key ( n , e )
11
Encryption
  • Alices message M1, M2,,Mt Ci Mie
    mod n
  • Bob decrypts the message by Mi Cid
    mod n

ed 1 mod f(n) gt ed 1 t f(n) Cid
Mied Mi 1 t f(n) Mi mod p Fermats
Little Thm gt Mip-1 1 mod
p Similarly Cid
Mi mod q Chinese Remainder Thm gt
Cid Mi mod n
WHY?
12
Cracking RSA
  • Need exponent d
  • Euclids Algorithm ed 1 mod f(n)
  • Factorisation of n
  • Proof
  • Requires enormous computational power

13
Cryptology in the Classroom
  • Interesting AND Relevant
  • Classical Cryptography
  • Frequency Analysis Statistics
  • Combinations / Permutations
  • Modular Arithmetic
  • Logic / Problem solving
  • Extensions
  • Asymmetric encryption
  • Primes
  • Hashing Functions
  • Authentication
  • Error Correction

14
Any Questions?
Write a Comment
User Comments (0)
About PowerShow.com