Title: Social patterning in bedsharing behaviour
1Social patterning in bed-sharing behaviour
- A longitudinal latent class analysis (LLCA)
2Aim
- Examine proximal sleeping arrangements between
parents and their infant/child in terms of - Potential influences on other care practices
- Perceived benefits to parents/child
- Effect of bed-sharing practices on
- Breastfeeding / pacifier use / infant well-being
- Child development / behaviour / health / sleeping
patterns - Maternal anxiety / bonding / sleep duration
3Bed-sharing definition
- Not easy!
- Occupants of the bed / the room and proximity to
parents can change throughout the night / between
different days of week - Bed-sharer if they usually shared a bed with an
adult for nocturnal sleep (not nec. the parental
bed) - Bed-sharing took priority if a variety of
practices were reported either between days or
across the period of a single night
4Rates of bed-sharing (n 7447)
5C/S association t1
- S-class Not bed-sh Bed-sh Total
- -------------------------------------------
- Lo 3,417 363 3,780
- 90.40 9.60 100.00
- -------------------------------------------
- Hi 2,145 406 2,551
- 84.08 15.92 100.00
- -------------------------------------------
- Total 5,562 769 6,331
- 87.85 12.15 100.00
-
- Pearson chi2(1) 56.8686 Pr 0.000
6C/S association t2
- S-class Not bed-sh Bed-sh Total
- -------------------------------------------
- Lo 3,224 556 3,780
- 85.29 14.71 100.00
- -------------------------------------------
- Hi 2,152 399 2,551
- 84.36 15.64 100.00
- -------------------------------------------
- Total 5,376 955 6,331
- 84.92 15.08 100.00
- Pearson chi2(1) 1.0327 Pr 0.310
7C/S association t3
-
- S-class Not bed-sh Bed-sh Total
- -------------------------------------------
- Lo 3,067 713 3,780
- 81.14 18.86 100.00
- -------------------------------------------
- Hi 2,171 380 2,551
- 85.10 14.90 100.00
- -------------------------------------------
- Total 5,238 1,093 6,331
- 82.74 17.26 100.00
- Pearson chi2(1) 16.7750 Pr 0.000
8C/S association t4
- S-class Not bed-sh Bed-sh Total
- -------------------------------------------
- Lo 2,898 882 3,780
- 76.67 23.33 100.00
- -------------------------------------------
- Hi 2,070 481 2,551
- 81.14 18.86 100.00
- -------------------------------------------
- Total 4,968 1,363 6,331
- 78.47 21.53 100.00
- Pearson chi2(1) 18.0785 Pr 0.000
9C/S association t5
-
- S-class Not bed-sh Bed-sh Total
- -------------------------------------------
- Lo 2,936 844 3,780
- 77.67 22.33 100.00
- -------------------------------------------
- Hi 2,072 479 2,551
- 81.22 18.78 100.00
- -------------------------------------------
- Total 5,008 1,323 6,331
- 79.10 20.90 100.00
- Pearson chi2(1) 11.6191 Pr 0.001
10Model fit stats
Note aBIC still decreasing entropy never
particularly high
11Class sizes
- FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT
CLASS PATTERNS - BASED ON ESTIMATED POSTERIOR PROBABILITIES
- Latent classes
- 1 1240.78344 0.16662
- 2 969.53997 0.13019
- 3 4761.71765 0.63941
- 4 474.95894 0.06378
- CLASSIFICATION OF INDIVIDUALS BASED ON MOST
LIKELY LATENT CLASS MEMBERSHIP - Latent classes
- 1 1218 0.16356
- 2 650 0.08728
- 3 5075 0.68148
12Entropy
- CLASSIFICATION QUALITY
- Entropy 0.732
-
- Average Latent Class Probabilities for Most
Likely Latent Class Membership (Row) by Latent
Class (Column) - 1 2 3 4
- 1 0.814 0.031 0.122 0.033
- 2 0.048 0.850 0.042 0.060
- 3 0.029 0.067 0.904 0.000
- 4 0.145 0.074 0.000 0.781
13Entropy
- CLASSIFICATION QUALITY
- Entropy 0.732
-
- Average Latent Class Probabilities for Most
Likely Latent Class Membership (Row) by Latent
Class (Column) - 1 2 3 4
- 1 0.814 0.031 0.122 0.033
- 2 0.048 0.850 0.042 0.060
- 3 0.029 0.067 0.904 0.000
- 4 0.145 0.074 0.000 0.781
Not a weighted average!!
14Class 1 (16.7)
- -------------------------------------------------
-------------------------- - bed_t1 bed_t2 bed_t3 bed_t4 bed_t5 p_c1
p_c2 p_c3 p_c4 num - -------------------------------------------------
-------------------------- - 0 0 0 0 0 .951
0 .04 .009 4150 - 0 0 0 0 1 .723
.001 .081 .194 348 - 1 0 0 0 0 .723
0 .266 .011 300 - 0 0 1 0 0 .649
.003 .221 .128 231 - 1 0 0 0 1 .406
.01 .401 .182 46 - -------------------------------------------------
--------------------------
15Class 2 (13.0)
- -------------------------------------------------
-------------------------- - bed_t1 bed_t2 bed_t3 bed_t4 bed_t5 p_c1
p_c2 p_c3 p_c4 num - -------------------------------------------------
-------------------------- - 0 1 1 1 1 0
.836 .006 .158 141 - 1 1 1 1 1 0
.974 .004 .022 92 - 0 1 0 1 1 0
.541 .04 .418 64 - 0 1 1 1 0 0
.743 .074 .184 62 - 1 1 1 1 0 0
.916 .057 .027 42 - 1 1 0 1 1 0
.877 .041 .081 35 - 0 1 1 0 1 .001
.468 .381 .15 34 - 1 1 1 0 1 0
.644 .331 .025 18 - 1 1 0 1 0 .001
.559 .371 .068 16 - -------------------------------------------------
--------------------------
16Class 3 (63.9)
- -------------------------------------------------
-------------------------- - bed_t1 bed_t2 bed_t3 bed_t4 bed_t5 p_c1
p_c2 p_c3 p_c4 num - -------------------------------------------------
-------------------------- - 0 1 0 0 0 .066
.007 .913 .013 255 - 1 1 0 0 0 .008
.013 .977 .003 118 - 0 1 1 0 0 .008
.077 .883 .032 82 - 0 1 0 0 1 .021
.089 .773 .117 49 - 0 1 0 1 0 .011
.323 .34 .326 49 - 1 1 1 0 0 .001
.121 .872 .006 42 - 1 0 1 0 0 .228
.013 .683 .075 32 - 1 1 0 0 1 .003
.151 .823 .024 23 - -------------------------------------------------
--------------------------
17Class 4 (6.4)
- -------------------------------------------------
------------------------- - bed_t1 bed_t2 bed_t3 bed_t4 bed_t5 p_c1
p_c2 p_c3 p_c4 num - -------------------------------------------------
------------------------- - 0 0 0 1 1 .024
.011 .006 .959 324 - 0 0 0 1 0 .401
.005 .037 .557 296 - 0 0 1 1 1 .001
.045 .002 .952 263 - 0 0 1 1 0 .031
.033 .023 .913 139 - 0 0 1 0 1 .129
.02 .118 .733 75 - 1 0 0 1 1 .013
.084 .028 .875 30 - 1 0 1 1 1 .001
.278 .009 .712 29 - 1 0 0 1 0 .233
.039 .187 .541 28 - 1 0 1 1 0 .014
.206 .092 .689 24 - 1 0 1 0 1 .048
.105 .388 .459 10 - -------------------------------------------------
-------------------------
184-class model trajectories
19Multinomial model
- Multinomial logistic regression
Number of obs 6331 -
LR chi2(3) 22.31 -
Prob gt chi2 0.0001 - Log likelihood -6450.991
Pseudo R2 0.0017 - --------------------------------------------------
------------------------------ - class RRR Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
------------------------------ - Always Bed-sh
- Hi Soc Class .8664276 .0935659 -1.33
0.184 .7011495 1.070666 - -------------------------------------------------
------------------------------ - Early Bed-sh
- Hi Soc Class 1.167799 .0895738 2.02
0.043 1.004797 1.357244 - -------------------------------------------------
------------------------------ - Late Bed-sh
- Hi Soc Class .767075 .0557954 -3.65
0.000 .6651556 .8846111 - --------------------------------------------------
------------------------------ - (classNon Bed-share is the base outcome)
20Latent Class Growth Analysis
21(No Transcript)
22(No Transcript)
23Latent Class Growth Analysis
- Alternative to LLCA
- Fits polynomials on logit scale, not in
probability space (more flexible than one might
think) - Recall that LLCA items thresholds also estimated
on logit scale - More parsimonius than LLCA (less parameters)
- Unlikely to capture some shapes e.g. a relapse
24LCGA in Mplus
- Shorthand
- i s q y1_at_0 y2_at_1 y3_at_2 y4_at_3 y5_at_4
- Longhand
- i by y1_at_0 y2_at_0 y3_at_0 y4_at_0 y5_at_0
- s by y1_at_0 y2_at_1 y3_at_2 y4_at_3 y5_at_4
- q by y1_at_0 y2_at_2 y3_at_4 y4_at_9 y5_at_16
- y1-y5_at_0 i s q
- i/s/q are factors defined by FIXING loadings onto
the manifest variables - In LCGA these growth factors are constant (zero
variance) and are uncorrelated - In GMM the growth factors have a variance, and
are correlated with each other (Cor(i,s) ne 0)
25Choosing the growth parameters
- With LLCA there are no choices to be made
regarding how to describe/parameterize the
trajectories they dont really exist - With LCGA you can fit
- 4-class linear
- 4-class quadratic
- 4-class with two linear and two quadratic
- 4-class with 1 cubic, 1 quad, 1 linear, 1
constant - Etc.
26Choosing the factor loadings
- We have five repeated measures
- 1, 6, 18, 30 and 42 months
- Options
- i s q bedt1_at_1 bedt2_at_6 bedt3_at_18 bedt4_at_30
bedt5_at_42 - i s q bedt1_at_0 bedt2_at_5 bedt3_at_17 bedt4_at_29
bedt5_at_41 - i s q bedt1_at_0.083 bedt2_at_0.5 bedt3_at_1.5
bedt4_at_2.5 bedt5_at_3.5
27Effect of different choices (4 class)
- i s q beds_ka_at_1 beds_kb_at_6 beds_kd_at_18 beds_kf_at_30
beds_kj_at_42 - 7266 perturbed starting value run(s) did not
converge. - Final stage loglikelihood values at local maxima,
seeds, and initial stage start numbers - -15077.633 377466 11367
- ONE OR MORE MULTINOMIAL LOGIT PARAMETERS WERE
FIXED TO AVOID SINGULARITY OF THE INFORMATION
MATRIX. - THE SINGULARITY IS MOST LIKELY BECAUSE THE MODEL
IS NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN
THE JOINT - DISTRIBUTION OF THE CATEGORICAL LATENT
VARIABLES AND ANY INDEPENDENT VARIABLES. - THE FOLLOWING PARAMETERS WERE FIXED 13 15
28Effect of different choices (4 class)
- i s q beds_ka_at_0.083 beds_kb_at_0.5 beds_kd_at_1.5
beds_kf_at_2.5 beds_kj_at_3.5 - 21 perturbed starting value run(s) did not
converge. - Final stage loglikelihood values at local maxima,
seeds, and initial stage start numbers - -15077.612 930654 1156
- THE MODEL ESTIMATION TERMINATED NORMALLY
29- 4-class MODEL RESULTS
-
Two-Tailed - Estimate S.E.
Est./S.E. P-Value - Latent Class 1
- I
- BEDS_t1 1.000 0.000
999.000 999.000 - BEDS_t2 1.000 0.000
999.000 999.000 - BEDS_t3 1.000 0.000
999.000 999.000 - BEDS_t4 1.000 0.000
999.000 999.000 - BEDS_t5 1.000 0.000
999.000 999.000 - S
- BEDS_t1 0.083 0.000
999.000 999.000 - BEDS_t2 0.500 0.000
999.000 999.000 - BEDS_t3 1.500 0.000
999.000 999.000 - BEDS_t4 2.500 0.000
999.000 999.000
All fixed (not estimated)
30- 4-class MODEL RESULTS
-
Two-Tailed - Estimate S.E.
Est./S.E. P-Value - Latent Class 1
- Means
- I 2.001 0.144
13.876 0.000 - S 1.452 0.146
9.975 0.000 - Q -0.311 0.037
-8.319 0.000 - Thresholds
- BEDS_t11 2.662 0.086
31.010 0.000 - BEDS_t21 2.662 0.086
31.010 0.000 - BEDS_t31 2.662 0.086
31.010 0.000 - BEDS_t41 2.662 0.086
31.010 0.000
Estimated different across classes
Estimated equal across classes
314-class LCGA model
324-class LCGA model
These are all quadratics!
33Comparison with LLCA result
LCGA LLCA
Entropy 0.805 aBIC 30241.3
Entropy 0.732 aBIC 30260.3
34Comparison with LLCA result
LCGA LLCA
Entropy 0.805 aBIC 30241.3
Entropy 0.732 aBIC 30260.3
Curves may look similar(ish), but check class
distribution and pattern assignment
35Model fitting
- Aim is to find the simplest model which explains
the data - As with LCA, compare models with different
classes - Simplify polynomials if possible
- Start with i/s/q and then constrain q terms to be
zero if they are negligible
36How constraints can get you out of a pickle
- 5-class model
- ONE OR MORE PARAMETERS WERE FIXED TO AVOID
SINGULARITY OF THE INFORMATION MATRIX. THE
SINGULARITY IS MOST LIKELY BECAUSE THE MODEL IS
NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN THE
JOINT DISTRIBUTION OF THE CATEGORICAL VARIABLES
IN THE MODEL. - THE FOLLOWING PARAMETERS WERE FIXED
- 10
37Output tech1
- PARAMETER SPECIFICATION FOR LATENT CLASS
INDICATOR GROWTH MODEL PART -
- ALPHA(F) FOR LATENT CLASS 1
- I S Q
- ________ ________
________ - 1 2 3 4
- ALPHA(F) FOR LATENT CLASS 2
- I S Q
- ________ ________
________ - 1 5 6 7
- ALPHA(F) FOR LATENT CLASS 3
- I S Q
38Constrain a q to be zero
- OVERALL
- i s q beds_ka_at_0.083 beds_kb_at_0.5
- beds_kd_at_1.5 beds_kf_at_2.5 beds_kj_at_3.5
- c1
- q_at_0
- Then re-run the model doesnt always work!!!
39Conclusions
- LLCA / LCGA can be fitted to repeated binary data
- LCGA uses less parameters but cannot capture all
shapes so equivalent model may be more
parsimonious but have poorer fit - Output from both is posterior probabilities for
class membership ? weighted regression models