Title: Muon to Electron COnversion MECO Experiment
1Muon to Electron COnversion (MECO) Experiment
- Boston University
- R. Carey, V. Logashenko
- J. Miller, B. L. Roberts,
- Brookhaven National Laboratory
- K. Brown, M. Brennan, G. GreeneL. Jia, W.
Marciano, W. Morse, P.
Pile, Y. Semertzidis, P. Yamin - Berkeley
- Y. Kolomensky
- University of California, Irvine
- C. Chen, M. Hebert, P. Huwe,
- W. Molzon, J. Popp, V. Tumakov
- University of Houston
- Y. Cui, N. Elkhayari, E. V. Hungerford,
- N. Klantarians, K. A. Lan
University of Massachusetts, Amherst K.
Kumar Institute for Nuclear Research, Moscow V.
M. Lobashev, V. Matushko New
York University R. M. Djilkibaev, A. Mincer,
P. Nemethy, J. Sculli Osaka
University M. Aoki, Y. Kuno, A. Sato University
of Virginia C. Dukes, K. Nelson, A.
Norman Syracuse University R. Holmes, P.
Souder College of William and Mary M. Eckhause,
J. Kane, R. Welsh
2We want to measure R?e with Sensitivity
Need
- High Proton Flux, High Muon Collection
Efficiency, goal 1011muon stops/sec - High Background Rejection, High Extinction
3History of Lepton Flavor Violation Searches
1
?- N ? e-N ? ? e? ? ? e e e-
10-2
10-4
10-6
10-8
MEGA
10-10
E871
10-12
K0?? ?e- K?? ? ?e-
SINDRUM2
PSI-MEG Goal ?
10-14
10-16
MECO Goal ?
1940 1950 1960 1970
1980 1990 2000 2010
4MECO Requirements
- Increase the muon flux (graded solenoid, MELC
design), collect 10-2 muons/proton - Use pulsed beam with for prompt background rejection
- Detect only promising events defines
detector geometry resolution requirements - Use cosmic ray veto
5Number of p- per InteractionComparison with Data
Pions/GeV
By V. Tumakov
Prediction for MECO Beam
GHEISHA DATA GCALOR FLUKA
Kinetic Energy GeV
6The MECO Apparatus
Straw Tracker
Muon Stopping Target
Muon Beam Stop
Superconducting Transport Solenoid
(2.5 T 2.1 T)
Crystal Calorimeter
Superconducting Detector Solenoid (2.0 T
1.0 T)
Superconducting Production Solenoid (5.0
T 2.5 T)
Muon Production Target
Collimators
Proton Beam
Proton Beam
7Charged particles helix conserves flux
- R2?B is constant
- i.e. in a graded solenoid transverse momentum
is transformed into longitudinal increasing its
collection efficiency.
is constant too,
8Magnetic Field Overview
Production region
Magnetic field vs distance
5T
Curved sections
Curved sections
Detector region
3T
1T
At 3.3 Tesla 75 of muon capture efficiency of 5
Tesla.
0
10
20
Distance along beam path m
9Muon Beam Transport with Curved Solenoid
- Goals
- Transport low energy ?-to the detector solenoid
- Minimize transport of positive particles and
high energy particles - Minimize transport of neutral particles
- Absorb anti-protons in a thin window
- Minimize long transittime trajectories
10Sign and Momentum Selection in the Curved
Transport Solenoid
11Momentum and Time Distributions in MECO Muon Beam
Relative Flux
Particles/proton/ns
e- e m- m
e-
e
m-
m
Time ns
Momentum MeV/c
12Transported and stopped muons
Transported muon spectrum
Stopped muon spectrum
13Stopping Target and Experiment in Detector
Solenoid
1T
Electron Calorimeter
1T
Tracking Detector
2T
Stopping Target 17 layers of 0.2 mm Al
14Magnetic Spectrometer for Conversion Electron
Momentum Measurement
- Measures electron momentum with precision of
about 0.3 (RMS) essential to eliminate muon
decay in orbit background
Electron starts upstream, reflects in field
gradient
- 2800 nearly axial detectors, 2.6 m long, 5 mm
diameter,0.025 mm wall thickness minimum
material to reduce scattering - position resolution of 0.2 mm in transverse
direction, 1.5 mm in axial direction
15Expected Sensitivity of the MECO Experiment
- MECO expects 5 signal events for 107 s running
for Rme 10-16
16MECO at Brookhaven National Laboratory
17Extinction at the AGS of BNL
Use 6 buckets, only two of them filled with beam.
Time between filled buckets 1.35 ?s
Measurement Time
AGS Ring
20TP
20TP
Extinction of 10-9
18RSVP/MECO Milestones
19MECO Cost Estimates
- Solenoids 57M
- Meco Experimental Equipment 26M