Title: Strange Attractors From Art to Science
1Strange Attractors From Art to Science
- J. C. Sprott
- Department of Physics
- University of Wisconsin - Madison
- Presented to the
- University of Wisconsin - Madison Physics
Colloquium - On November 14, 1997
2Outline
- Modeling of chaotic data
- Probability of chaos
- Examples of strange attractors
- Properties of strange attractors
- Attractor dimension
- Lyapunov exponent
- Simplest chaotic flow
- Chaotic surrogate models
- Aesthetics
3Acknowledgments
- Collaborators
- G. Rowlands (physics) U. Warwick
- C. A. Pickover (biology) IBM Watson
- W. D. Dechert (economics) U. Houston
- D. J. Aks (psychology) UW-Whitewater
- Former Students
- C. Watts - Auburn Univ
- D. E. Newman - ORNL
- B. Meloon - Cornell Univ
- Current Students
- K. A. Mirus
- D. J. Albers
4Typical Experimental Data
5
x
-5
500
Time
0
5Determinism
- xn1 f (xn, xn-1, xn-2, )
- where f is some model equation with adjustable
parameters
6Example (2-D Quadratic Iterated Map)
- xn1 a1 a2xn a3xn2 a4xnyn a5yn a6yn2
- yn1 a7 a8xn a9xn2 a10xnyn a11yn
a12yn2
7Solutions Are Seldom Chaotic
20
Chaotic Data (Lorenz equations)
Chaotic Data (Lorenz equations)
x
Solution of model equations
Solution of model equations
-20
Time
0
200
8How common is chaos?
1
Logistic Map xn1 Axn(1 - xn)
Lyapunov Exponent
-1
-2
4
A
9A 2-D Example (Hénon Map)
2
b
xn1 1 axn2 bxn-1
-2
a
-4
1
10The Hénon Attractor
xn1 1 - 1.4xn2 0.3xn-1
11Mandelbrot Set
xn1 xn2 - yn2 a yn1 2xnyn b
a
zn1 zn2 c
b
12Mandelbrot Images
13General 2-D Quadratic Map
100
Bounded solutions
10
Chaotic solutions
1
0.1
amax
0.1
1.0
10
14Probability of Chaotic Solutions
100
Iterated maps
10
Continuous flows (ODEs)
1
0.1
Dimension
1
10
15Neural Net Architecture
tanh
16 Chaotic in Neural Networks
17Types of Attractors
Limit Cycle
Fixed Point
Spiral
Radial
Torus
Strange Attractor
18Strange Attractors
- Limit set as t ? ?
- Set of measure zero
- Basin of attraction
- Fractal structure
- non-integer dimension
- self-similarity
- infinite detail
- Chaotic dynamics
- sensitivity to initial conditions
- topological transitivity
- dense periodic orbits
- Aesthetic appeal
19Stretching and Folding
20Correlation Dimension
5
Correlation Dimension
0.5
1
10
System Dimension
21Lyapunov Exponent
10
1
Lyapunov Exponent
0.1
0.01
1
10
System Dimension
22Simplest Chaotic Flow
dx/dt y dy/dt z dz/dt -x y2 - Az
2.0168 lt A lt 2.0577
23Simplest Chaotic Flow Attractor
24Simplest Conservative Chaotic Flow
...
.
x x - x2 - 0.01
25Chaotic Surrogate Models
xn1 .671 - .416xn - 1.014xn2 1.738xnxn-1
.836xn-1 -.814xn-12
Data
Model
Auto-correlation function (1/f noise)
26Aesthetic Evaluation
27Summary
- Chaos is the exception at low D
- Chaos is the rule at high D
- Attractor dimension D1/2
- Lyapunov exponent decreases with increasing D
- New simple chaotic flows have been discovered
- Strange attractors are pretty
28References
- http//sprott.physics.wisc.edu/
lectures/sacolloq/ - Strange Attractors Creating Patterns in Chaos
(MT Books, 1993) - Chaos Demonstrations software
- Chaos Data Analyzer software
- sprott_at_juno.physics.wisc.edu