Strange Attractors From Art to Science - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Strange Attractors From Art to Science

Description:

Strange Attractors From Art to Science J. C. Sprott Department of Physics University of Wisconsin - Madison Presented to the University of Wisconsin - Madison Physics ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 29
Provided by: JC91
Category:

less

Transcript and Presenter's Notes

Title: Strange Attractors From Art to Science


1
Strange Attractors From Art to Science
  • J. C. Sprott
  • Department of Physics
  • University of Wisconsin - Madison
  • Presented to the
  • University of Wisconsin - Madison Physics
    Colloquium
  • On November 14, 1997

2
Outline
  • Modeling of chaotic data
  • Probability of chaos
  • Examples of strange attractors
  • Properties of strange attractors
  • Attractor dimension
  • Lyapunov exponent
  • Simplest chaotic flow
  • Chaotic surrogate models
  • Aesthetics

3
Acknowledgments
  • Collaborators
  • G. Rowlands (physics) U. Warwick
  • C. A. Pickover (biology) IBM Watson
  • W. D. Dechert (economics) U. Houston
  • D. J. Aks (psychology) UW-Whitewater
  • Former Students
  • C. Watts - Auburn Univ
  • D. E. Newman - ORNL
  • B. Meloon - Cornell Univ
  • Current Students
  • K. A. Mirus
  • D. J. Albers

4
Typical Experimental Data
5
x
-5
500
Time
0
5
Determinism
  • xn1 f (xn, xn-1, xn-2, )
  • where f is some model equation with adjustable
    parameters

6
Example (2-D Quadratic Iterated Map)
  • xn1 a1 a2xn a3xn2 a4xnyn a5yn a6yn2
  • yn1 a7 a8xn a9xn2 a10xnyn a11yn
    a12yn2

7
Solutions Are Seldom Chaotic
20
Chaotic Data (Lorenz equations)
Chaotic Data (Lorenz equations)
x
Solution of model equations
Solution of model equations
-20
Time
0
200
8
How common is chaos?
1
Logistic Map xn1 Axn(1 - xn)
Lyapunov Exponent
-1
-2
4
A
9
A 2-D Example (Hénon Map)
2
b
xn1 1 axn2 bxn-1
-2
a
-4
1
10
The Hénon Attractor
xn1 1 - 1.4xn2 0.3xn-1
11
Mandelbrot Set
xn1 xn2 - yn2 a yn1 2xnyn b
a
zn1 zn2 c
b
12
Mandelbrot Images
13
General 2-D Quadratic Map
100
Bounded solutions
10
Chaotic solutions
1
0.1
amax
0.1
1.0
10
14
Probability of Chaotic Solutions
100
Iterated maps
10
Continuous flows (ODEs)
1
0.1
Dimension
1
10
15
Neural Net Architecture
tanh
16
Chaotic in Neural Networks
17
Types of Attractors
Limit Cycle
Fixed Point
Spiral
Radial
Torus
Strange Attractor
18
Strange Attractors
  • Limit set as t ? ?
  • Set of measure zero
  • Basin of attraction
  • Fractal structure
  • non-integer dimension
  • self-similarity
  • infinite detail
  • Chaotic dynamics
  • sensitivity to initial conditions
  • topological transitivity
  • dense periodic orbits
  • Aesthetic appeal

19
Stretching and Folding
20
Correlation Dimension
5
Correlation Dimension
0.5
1
10
System Dimension
21
Lyapunov Exponent
10
1
Lyapunov Exponent
0.1
0.01
1
10
System Dimension
22
Simplest Chaotic Flow
dx/dt y dy/dt z dz/dt -x y2 - Az
2.0168 lt A lt 2.0577
23
Simplest Chaotic Flow Attractor
24
Simplest Conservative Chaotic Flow
...
.
x x - x2 - 0.01
25
Chaotic Surrogate Models
xn1 .671 - .416xn - 1.014xn2 1.738xnxn-1
.836xn-1 -.814xn-12
Data
Model
Auto-correlation function (1/f noise)
26
Aesthetic Evaluation
27
Summary
  • Chaos is the exception at low D
  • Chaos is the rule at high D
  • Attractor dimension D1/2
  • Lyapunov exponent decreases with increasing D
  • New simple chaotic flows have been discovered
  • Strange attractors are pretty

28
References
  • http//sprott.physics.wisc.edu/
    lectures/sacolloq/
  • Strange Attractors Creating Patterns in Chaos
    (MT Books, 1993)
  • Chaos Demonstrations software
  • Chaos Data Analyzer software
  • sprott_at_juno.physics.wisc.edu
Write a Comment
User Comments (0)
About PowerShow.com