BLOG: Probabilistic Models with Unknown Objects - PowerPoint PPT Presentation

About This Presentation
Title:

BLOG: Probabilistic Models with Unknown Objects

Description:

... Ball BallDrawn(Draw); random Color ObsColor(Draw); guaranteed Color Blue, ... Given 10 draws, all appearing blue. 5 runs of 100,000 samples each. Conclusions ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 29
Provided by: brian94
Category:

less

Transcript and Presenter's Notes

Title: BLOG: Probabilistic Models with Unknown Objects


1
BLOG Probabilistic Models with Unknown Objects
  • Brian Milch, Bhaskara Marthi, Stuart
    Russell,David Sontag, Daniel L. Ong, Andrey
    Kolobov
  • University of California at Berkeley

2
Basic Task
  • Given observations, make inferences about
    underlying objects
  • Difficulties
  • Dont know list of objects in advance
  • Dont know when same object observed twice

(identity uncertainty / data association / record
linkage)
3
Handling Unknown Objects
  • Standard practice special-purpose algorithms to
    resolve identity uncertainty
  • Goal Resolve identity uncertainty by inference
    in probabilistic model
  • Bayesian LOGic (BLOG) representation language
    for models with
  • Unknown set of objects
  • Unknown map from observations to objects

4
Outline
  • Motivating applications
  • Bayesian Logic (BLOG)
  • Syntax
  • Semantics
  • Proof-of-concept experimental results

5
Example 1 Aircraft Tracking
DetectionFailure
6
Example 1 Aircraft Tracking
UnobservedObject
FalseDetection
7
Example 2 Bibliographies
8
Simple Example Balls in an Urn
P(n balls in urn)
P(n balls in urn draws)
Draws
(with replacement)
1
2
3
4
9
Possible Worlds
3.00 x 10-3
7.61 x 10-4
1.19 x 10-5


2.86 x 10-4
1.14 x 10-12


10
Distributions over First-Order Structures
  • Idea goes back to Gaifman 1964
  • Halpern 1990 defines language for stating
    constraints on such distributions
  • But not specifying a distribution uniquely
  • Logic programming approaches Poole 1993 Sato
    Kameya 2001 Kersting De Raedt 2001 define
    unique distributions, but assume unique names and
    domain closure
  • PRMs Koller Pfeffer 1998 have special
    constructs for number uncertainty, existence
    uncertainty
  • BLOG Unified syntax for distributions over
    worlds with
  • Varying sets of objects
  • Varying mappings from observations to objects
  • See also MEBN Laskey and da Costa, UAI 2005

11
Generative Process for Possible Worlds
Draws
(with replacement)
1
2
3
4
12
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

13
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

header
number statement
dependencystatements
14
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

?
Identity uncertainty BallDrawn(Draw1)
BallDrawn(Draw2)
15
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

Arbitrary conditionalprobability distributions
CPD arguments
16
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

Context-specific dependence
17
BLOG Model for Urn and Balls
  • type Color type Ball type Draw
  • random Color TrueColor(Ball)random Ball
    BallDrawn(Draw)random Color ObsColor(Draw)
  • guaranteed Color Blue, Greenguaranteed Draw
    Draw1, Draw2, Draw3, Draw4
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if (BallDrawn(d) ! null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

18
Generative Process for Aircraft Tracking
Existence of radar blips depends on existence
and locations of aircraft
Sky
Radar
19
BLOG Model for Aircraft Tracking
Source
a
  • Aircraft NumAircraftDistrib()
  • State(a, t) if t 0 then InitState() else
    StateTransition(State(a, Pred(t)))
  • Blip (Source, Time) -gt (a, t)
    NumDetectionsDistrib(State(a, t))
  • Blip (Time) -gt (t) NumFalseAlarmsDistrib()
  • ApparentPos(r)if (Source(r) null) then
    FalseAlarmDistrib()else ObsDistrib(State(Source
    (r), Time(r)))

Blips
2
t
Time
Blips
2
t
Time
20
Declarative Semantics
  • What is the set of possible worlds?
  • What is the probability distribution over worlds?

21
What Exactly Are the Objects?
  • Objects are tuples that encode generation history
  • Aircraft (Aircraft, 1), (Aircraft, 2),
  • Blip from (Aircraft, 2) at time 8 (Blip,
    (Source, (Aircraft, 2)), (Time, 8), 1)

22
Basic Random Variables (RVs)
  • For each number statement and tuple of generating
    objects, have RV for number of objects generated
  • For each function symbol and tuple of arguments,
    have RV for function value
  • Lemma Full instantiation of these RVs uniquely
    identifies a possible world

23
Another Look at a BLOG Model
  • Ball Poisson6()
  • TrueColor(b) TabularCPD0.5, 0.5()
  • BallDrawn(d) UniformChoice(Ball b)
  • ObsColor(d) if !(BallDrawn(d) null) then
    NoisyCopy(TrueColor(BallDrawn(d)))

Dependency and number statements define CPDs for
basic RVs
24
Just a Bayes Net?
Ball
TrueColor(B1)
TrueColor(B2)
TrueColor(B3)

ObsColor(D1)
Infinite parent set
BallDrawn(D1)
Standard BN results no longer apply
25
Probability Distribution
  • BLOG model specifies
  • Conditional distributions for basic RVs
  • Factorization properties for certain finite
    instantiations of basic RVs
  • Theorem Under certain conditions (analogous to
    BN acyclicity), every BLOG model defines unique
    distribution over possible worlds

26
Inference
  • Does infinite set of basic RVs prevent inference?
  • No Sampling algorithm only needs to instantiate
    finite set of relevant variables
  • Algorithms
  • Rejection sampling this paper
  • Guided likelihood weighting Milch et al.,
    AI/Stats 2005
  • Theorem For large class of BLOG models, sampling
    algorithms converge to correct probability for
    any query, using finite time per sampling step

27
Proof-Of-Concept Experiment
  • Given 10 draws, all appearing blue
  • 5 runs of 100,000 samples each

prior
posterior
28
Conclusions
  • Bayesian logic (BLOG) models define unique
    distributions over first-order model structures
    with
  • Varying sets of objects
  • Varying mappings from terms to objects
  • Future work
  • Practical inference algorithms
  • Applications to text understanding
  • Applications to situation awareness (DBLOG)
Write a Comment
User Comments (0)
About PowerShow.com