Title: Quantum Criticality and
1Quantum Criticality and Black Holes
Talk online sachdev.physics.harvard.edu
2Particle theorists
Sean Hartnoll, KITP Christopher Herzog,
Princeton Pavel Kovtun, Victoria Dam Son,
Washington
3Condensed matter theorists
Yang Qi Harvard
Cenke Xu Harvard
Markus Mueller Geneva
4Three foci of modern physics
5Three foci of modern physics
6Three foci of modern physics
7Three foci of modern physics
8Three foci of modern physics
9Three foci of modern physics
Universal description of fluids based upon
conservation laws and positivity of entropy
production
10Three foci of modern physics
11Three foci of modern physics
12Three foci of modern physics
13Three foci of modern physics
14Three foci of modern physics
15Three foci of modern physics
Black holes
16Square lattice antiferromagnet
Ground state has long-range Néel order
17Square lattice antiferromagnet
J
J/
Weaken some bonds to induce spin entanglement in
a new quantum phase
18(No Transcript)
19(No Transcript)
20TlCuCl3
21Pressure in TlCuCl3
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
29Prediction of quantum field theory
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
30XPd(dmit)22
S
C
Pd
X
Pd(dmit)2
t
t
t
Half-filled band ? Mott insulator with spin S
1/2 Triangular lattice of Pd(dmit)22 ?
frustrated quantum spin system
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
31(No Transcript)
32Anisotropic triangular lattice antiferromagnet
Broken spin rotation symmetry
Neel ground state for small J/J
33Anisotropic triangular lattice antiferromagnet
Possible ground state for intermediate J/J
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989)
34Anisotropic triangular lattice antiferromagnet
Broken lattice space group symmetry
Valence bond solid (VBS)
Possible ground state for intermediate J/J
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989)
35Anisotropic triangular lattice antiferromagnet
Broken lattice space group symmetry
Valence bond solid (VBS)
Possible ground state for intermediate J/J
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989)
36Anisotropic triangular lattice antiferromagnet
Broken lattice space group symmetry
Valence bond solid (VBS)
Possible ground state for intermediate J/J
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989)
37Anisotropic triangular lattice antiferromagnet
Broken lattice space group symmetry
Valence bond solid (VBS)
Possible ground state for intermediate J/J
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989)
38Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
TN (K)
EtMe3As
Et2Me2P
Et2Me2As
Me4Sb
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
39Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
EtMe3P
TN (K)
EtMe3As
Et2Me2P
Et2Me2As
Me4Sb
Spin gap
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
40Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
EtMe3P
TN (K)
EtMe3As
VBS order
Et2Me2P
Et2Me2As
Me4Sb
Spin gap
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
41Observation of a valence bond solid (VBS) in
ETMe3PPd(dmit)22
X-ray scattering
Spin gap 40 K J 250 K
M. Tamura, A. Nakao and R. Kato, J. Phys. Soc.
Japan 75, 093701 (2006) Y. Shimizu, H. Akimoto,
H. Tsujii, A. Tajima, and R. Kato, Phys. Rev.
Lett. 99, 256403 (2007)
42Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
EtMe3P
TN (K)
EtMe3As
VBS order
Et2Me2P
Et2Me2As
Me4Sb
Spin gap
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
43Theoretical global phase diagram
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) T. Senthil, A. Vishwanath, L. Balents, S.
Sachdev and M.P.A. Fisher, Science 303, 1490
(2004). Cenke Xu and S. Sachdev, arXiv0811.1220
44Theoretical global phase diagram
CFTs
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) T. Senthil, A. Vishwanath, L. Balents, S.
Sachdev and M.P.A. Fisher, Science 303, 1490
(2004). Cenke Xu and S. Sachdev, arXiv0811.1220
45Theoretical global phase diagram
CFTs
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) T. Senthil, A. Vishwanath, L. Balents, S.
Sachdev and M.P.A. Fisher, Science 303, 1490
(2004). Cenke Xu and S. Sachdev, arXiv0811.1220
46Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
EtMe3P
TN (K)
EtMe3As
VBS order
Et2Me2P
Et2Me2As
Me4Sb
Spin gap
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
47Magnetic Criticality
XPd(dmit)22
Et2Me2Sb (CO)
Me4P
Me4As
Quantum criticality described by CFT
EtMe3P
TN (K)
EtMe3As
VBS order
Et2Me2P
Et2Me2As
Me4Sb
Spin gap
Neel order
EtMe3Sb
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and
R. Kato, J. Phys. Condens. Matter 19, 145240
(2007)
48Three foci of modern physics
49Three foci of modern physics
50Three foci of modern physics
51Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
52Superfluid-insulator transition
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
53(No Transcript)
54(No Transcript)
55Classical vortices and wave oscillations of the
condensate
Dilute Boltzmann/Landau gas of particle and holes
56CFT at Tgt0
57Quantum critical transport
S. Sachdev, Quantum Phase Transitions, Cambridge
(1999).
58Quantum critical transport
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
59Quantum critical transport
P. Kovtun, D. T. Son, and A. Starinets, Phys.
Rev. Lett. 94, 11601 (2005) , 8714 (1997).
60Superfluid-insulator transition
Indium Oxide films
G. Sambandamurthy, A. Johansson, E. Peled, D.
Shahar, P. G. Bjornsson, and K. A. Moler,
Europhys. Lett. 75, 611 (2006).
61Three foci of modern physics
62Three foci of modern physics
63Three foci of modern physics
64Black Holes
Objects so massive that light is gravitationally
bound to them.
65Black Holes
Objects so massive that light is gravitationally
bound to them.
The region inside the black hole horizon is
causally disconnected from the rest of the
universe.
66Black Hole Thermodynamics
Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics
67Black Hole Thermodynamics
Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics
68AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Maldacena, Gubser, Klebanov, Polyakov, Witten
69AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
A 21 dimensional system at its quantum critical
point
Maldacena, Gubser, Klebanov, Polyakov, Witten
70AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole temperature temperature of quantum
criticality
Maldacena, Gubser, Klebanov, Polyakov, Witten
71AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole entropy entropy of quantum
criticality
Strominger, Vafa
72AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Quantum critical dynamics waves in curved space
Maldacena, Gubser, Klebanov, Polyakov, Witten
73AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Friction of quantum criticality waves falling
into black hole
Kovtun, Policastro, Son
74Three foci of modern physics
75Three foci of modern physics
1
76Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
77Three foci of modern physics
1
78Three foci of modern physics
1
2
79Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
2. Solve Einstein-Maxwell equations in the
background of a black hole in AdS space
Yields hydrodynamic relations which apply to
general classes of quantum critical systems.
First exact numerical results for transport
co-efficients (for supersymmetric systems).
80Hydrodynamics of quantum critical systems
1. Use quantum field theory quantum transport
equations classical hydrodynamics Uses
physical model but strong-coupling makes
explicit solution difficult
2. Solve Einstein-Maxwell equations in the
background of a black hole in AdS space
Yields hydrodynamic relations which apply to
general classes of quantum critical systems.
First exact numerical results for transport
co-efficients (for supersymmetric systems).
Find perfect agreement between 1. and 2. In
some cases, results were obtained by 2. earlier !!
81Applications
1. Magneto-thermo-electric transport near
the superconductor-insulator transition
and in graphene Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
82Applications
1. Magneto-thermo-electric transport near
the superconductor-insulator transition
and in graphene Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
83(No Transcript)
84(No Transcript)
85 Cuprates
86 Cuprates
STM observations of VBS modulations by Y.
Kohsaka et al., Nature 454, 1072 (2008)
87 Cuprates
CFT?
88 Cuprates
Thermoelectric measurements
CFT?
89 Cuprates
Thermoelectric measurements
CFT?
90S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
91S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
92Nernst experiment
ey
Hm
H
93S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
94LSCO Experiments
Theory for
Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73,
024510 (2006).
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
95(No Transcript)
96(No Transcript)
97Applications
1. Magneto-thermo-electric transport near
the superconductor-insulator transition
and in graphene Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
98Applications
1. Magneto-thermo-electric transport near
the superconductor-insulator transition
and in graphene Hydrodynamic cyclotron resonance
Nernst effect 2. Quark-gluon plasma
Low viscosity fluid 3. Fermi gas at unitarity
Non-relativistic AdS/CFT
99AuAu collisions at RHIC
Quark-gluon plasma can be described as quantum
critical QCD
100Phases of nuclear matter
101S1/2 Fermi gas at a Feshbach resonance
102(No Transcript)
103(No Transcript)
104(No Transcript)
105T. Schafer, Phys. Rev. A 76, 063618 (2007). A.
Turlapov, J. Kinast, B. Clancy, Le Luo, J.
Joseph, J. E. Thomas, J. Low Temp. Physics 150,
567 (2008)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110Conclusions
- Theory for transport near quantum phase
transitions in superfluids and antiferromagnets - Exact solutions via black hole mapping have
yielded first exact results for transport
co-efficients in interacting many-body systems,
and were valuable in determining general
structure of hydrodynamics. - Theory of Nernst effect near the
superfluid-insulator transition, and connection
to cuprates. - Quantum-critical magnetotransport in graphene.