DLP Discrete Logarithm Problem - PowerPoint PPT Presentation

1 / 7
About This Presentation
Title:

DLP Discrete Logarithm Problem

Description:

DLP (Discrete Logarithm Problem) Suppose p is an odd prime. Zp={0,1,...,p-1} is a finite field. ... it is a cyclic multiplicative group. is a generator of Zp* , i.e. ... – PowerPoint PPT presentation

Number of Views:812
Avg rating:3.0/5.0
Slides: 8
Provided by: xkz8
Category:

less

Transcript and Presenter's Notes

Title: DLP Discrete Logarithm Problem


1
DLP (Discrete Logarithm Problem)
  • Suppose p is an odd prime.
  • Zp0,1,,p-1 is a finite field.
  • Zp the set of integers which are relatively
    prime to p.
  • a ? Zp gcd(a, p)11,,p-1
  • it is a cyclic multiplicative group.
  • ? is a generator of Zp ,
  • i.e. , Zp ? 0 mod p, ? 1mod p, , ? p-2 mod
    p.
  • DLP problem
  • Given any a, compute b ? ? a (mod p) is easy.
  • given any b, find an a such that b ? ? a (mod
    p) is difficult.
  • Denoted as a log ? b. Omit mod p for
    simplicity.

2
Example of DLP
  • p17, Zp 1,2,,16. ? 3 a generator,
  • Zp 30, 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 ,
    39 , 310 , 311 , 312 , 313 , 314 ,315
  • 1, 3, 9, 10, 13, 5, 15,11,16,14, 8, 7,
    4, 12, 2, 6
  • Note 316 mod 17 1.

3
Example of DLP (cont.)
Given a10, b ? 310 mod 17 ??.
8
Given b14, what is a ??
By searching the table, a9.
When p is large, table is very large.
4
ElGamal public key system
  • Suppose p is a prime such that DLP in (Zp , ?)
    is infeasible and ? is a generator.
  • K(p, ?, a, ?) where ? ? ?a mod p.
  • publicize p, ?, ?, but keep a secret.
  • For any x? Zp , select a random k ? Zp-1, define
  • eK(x,k) (y1, y2) where
  • y1 ? ? k mod p and y2 ? x? k mod p
  • For y1, y2 ? Zp, define dK(y1, y2) ? y2 (y1a)-1
    mod p

5
Example of ElGamal
  • p17, ? 3, a6, ? ?15
  • Message x11, then encryption is
  • Randomly select secret k3.
  • y1 ? ? k mod p ? 33 mod 17 10,
  • y2 ? x? k ? 11?153 mod 17 11?9 14.
  • So (10,14) is the encrypted message.
  • Decryption
  • y2 (y1a)-1
  • 14 ?(106)-1 mod 17 14 ?9-1 mod 17 14 ? 2 mod
    17 11.

6
Discussions of ElGamal
  • Proof of ElGamal ???
  • Why k ? Zp-1 ? also, k ? 0.
  • Ciphertext doubles plaintext.
  • Multiple ciphertexts (p-2) corresponding to one
    plaintext.

7
ElGamal signature scheme
  • Suppose p is a prime such that DLP in (Zp , ?)
    is infeasible and ? is a generator.
  • K(p, ?, a, ?) where ? ? ?a mod p.
  • publicize p, ?, ?, but keep a secret.
  • For any x? Zp , select a random k ? Zp-1,
    define
  • sigK(x,k) (?, ? ) where
  • ? ? ? k mod p and ? ? (x-a ?)k -1 mod p-1
  • For x, ? ? Zp and ? ? Zp-1,define
  • verK(x, (?, ? )) true iff ? ? ? ? ? ? x mod p
Write a Comment
User Comments (0)
About PowerShow.com