An Algebraic Algorithm for Weighted Linear Matroid Intersection - PowerPoint PPT Presentation

About This Presentation
Title:

An Algebraic Algorithm for Weighted Linear Matroid Intersection

Description:

An Algebraic Algorithm for. Weighted Linear Matroid Intersection. Nick Harvey ... Uniprocessor scheduling [Stallman '91] Survivable network design ... – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 28
Provided by: nickh8
Category:

less

Transcript and Presenter's Notes

Title: An Algebraic Algorithm for Weighted Linear Matroid Intersection


1
An Algebraic Algorithm forWeighted Linear
Matroid Intersection
  • Nick Harvey

2
What is Matroid Intersection?
NetworkFlow
SubmodularFlow
MinimumSpanningTree
SubmodularFunctionMinimization
MatroidIntersection
BipartiteMatching
Spanning TreePacking
MatroidGreedyAlgorithm
Non-Bip.Matching
MatroidMatching
MinimumArboresence
A central problem in discrete optimization
3
Matroid intersectionhas many uses
  • Edge connectivity Gabow 91
  • Uniprocessor scheduling Stallman 91
  • Survivable network designBalakrishnan-Magnanti-M
    irchandani 98
  • k-Delivery TSP Chalasani-Motwani 99
  • Constrained MST Hassin-Levin 04
  • Multicast Network Codes Harvey-Karger-Murota
    05
  • Bounded-Degree MST Goemans 06

4
An Example Problem
2 x1 5 x2
x3 x4 0 9
4 3 2 8
x5 0 x6 1
  • Does this matrix have full rank?
  • Can one replace xis with numbers s.t.rank is
    maximized?
  • Solvable via Matroid Intersection Murota 93

5
What is a Matroid?
a
b
c
1 0 1
0 1 1
0 1 1
  • rank 2
  • Linearly independent sets of columnsI Ø,
    a, b, c, a,b, b,c, a,c

6
What is a Matroid?
a
b
c


  • rank
  • Linearly independent sets of columnsI Ø,
    a, b, c, a,b, b,c, a,c
  • What is rank? Is a ? span(b,c)?
  • What properties of linear independenceare needed
    to answer these questions?

7
Independence Properties
Linearly independent sets of columnsI Ø,
a, b, c, a,b, b,c, a,c
  • Properties
  • Ø ? I
  • If A ? B ? I then A ? I
  • If A, B ? I and A lt B then ? b ? B such
    that Ab ? I

8
Definition
A matroid is a pair (S,I) with I ? 2S satisfying
the axioms
  • Ø ? I
  • If A ? B ? I then A ? I
  • If A, B ? I and A lt B then ? b ? B such
    that Ab ? I

9
Matroid Problems
  • Given M(S,I)
  • Find A ? I maximizing A
  • Find A ? I maximizing wt(A)
  • Given M1(S,I1) and M2(S,I2)
  • Find A ? I1 ? I2 maximizing A
  • Find A ? I1 ? I2 maximizing wt(A)
  • Given M1(S,I1), M2(S,I2), M3(S,I3)
  • Find A ? I1 ? I2 ? I3 maximizing A

MatroidGreedyAlgorithm
MatroidIntersection
WeightedMatroidIntersection
NP-hard!
10
Two types of algorithms
  • Oracle AlgorithmsAccess matroid by oracle
    queries Is A ? I?
  • Linear Matroid AlgorithmsInput is a matrix M
    s.t.I is the set of linearly indep. columns of M

11
Weighted Linear Matroid Intersection
  • Find set of columns S such thatAS and BS are
    both linearly independentand wt(S) is maximized

AS
1 1 0 0 1 0 1 0
1 0 0 1 1 1 0 1
0 0 1 1 0 1 1 0
0 1 0 1 1 0 1 1
A
weights
1 0 9 8 5 1 5 9
BS
7 6 6 3 7 1 9 0
9 2 9 2 4 9 6 1
3 3 4 7 0 4 3 3
1 4 8 4 2 2 5 3
B
12
Oracle Algorithm History
Access matroid by oracle queries Is A ? I?
Edmonds 65-70 Augmenting Paths O(nr2)
Lawler 75, Edmonds 79 Augmenting Paths O(nr2)
Cunningham 86 Blocking Flows O(nr1.5)
Shigeno-Iwata 95 Dual Approximation O(nr1.5 log(rW))
n S r rank(S) W max weight
Grey row unweighted algorithm
13
Linear Matroid Algorithm History
  • Given a matrix M s.t. I is set of indep. columns

Cunningham 86 Blocking Flows O(nr2 log r)
Gabow-Xu 89-96 Blocking Flows Fast Matrix Multiplication O(nr1.77 log W)
Harvey 06 Fast Matrix Multiplication O(nr?-1)
This Paper Fast Linear System Solvingfor Polynomial Matrices O(nr?-1 W1e)


matrix M has size n x r W max weight
Grey row unweighted algorithm
Randomized, and assumes matroids can be
represented over same field
14
Anatomy of a WeightedOptimization Algorithm
  • e.g Primal-Dual Method
  • repeat
  • adjust dual
  • find best primal using items allowed by dual
  • until primal is optimal
  • Can any fast primal alg be used here?
  • Want primal alg to work incrementally
  • Sadly, algebraic method is not incremental

15
Polynomial Matrices
  • Used in PRAM algs for matchingKUW 86, MVV
    87

2
a
e
2
0 x1y2 x2y2 x3y5
x4y0 x5y1 0 0
0 0 0 x6y0
x7y1 0 x8y1 0
5
0
b
f
1
0
c
g
1
1
d
h
16
Polynomial Matrices
  • Used in PRAM algs for matchingKUW 86, MVV
    87

2
a
e
2
0 3y2 1y2 6y5
2y0 4y1 0 0
0 0 0 3y0
1y1 0 4y1 0
5
0
b
f
1
0
c
g
1
1
d
h
Determinant 12y4 72y3
Max Weight of a Matching
17
Polynomial Matrices
  • Matrix M, size n x n,each entry a degree W
    polynomial
  • Computing determinant
  • On PRAM O(log2(nW)) time
  • Sequentially O(n5 W2) time naive alg
  • ? Can compute max weight of a perfect matching
    in O(n? W1e) time

O(n?1 W) time interpolation
O(n? W1e) time Storjohann 03
? Can compute max weight of a matroid
intersection in O(nr?-1 W1e) time
18
Weighted Linear Matroid Intersection
1 1 0 0 1 0 1 0
1 0 0 1 1 1 0 1
0 0 1 1 0 1 1 0
0 1 0 1 1 0 1 1
A
weights
1 0 9 8 5 1 5 9
7 6 6 3 7 1 9 0
9 2 9 2 4 9 6 1
3 3 4 7 0 4 3 3
1 4 8 4 2 2 5 3
B
19
Weighted Linear Matroid Intersection
A
1 0 9 8 5 1 5 9
20
Weighted Linear Matroid Intersection
BT
A
1
0
9
8
5
1
5
9
21
Weighted Linear Matroid Intersection
BT
Y
y1
y0
A
y9
y8
y5
y1
y5
y9
22
Weighted Linear Matroid Intersection
Claim 1 max weight of intersection ismax
exponent of y in det( A Y BT )
BT
Y
y1
y0
A
y9
y8
y5
y1
y5
y9
23
Weighted Linear Matroid Intersection
Claim 2 computing det( A Y BT )takes time
O(nr?-1 W1e)
BT
Y
y1
y0
A
y9
y8
y5
y1
y5
y9
24
Using Storjohannfor Optimization Problems
  • Can compute weight(OPT). How to find OPT?
  • Sankowski found a method for bipartite matching
    Sankowski 06
  • Define a family of perturbed instances.Compute
    weight(OPT) for all perturbed instances.
  • Using these weights, compute optimum dualfor
    original instance.
  • Given optimum dual, compute OPT.
  • ? Find optimal bip matching in O(n? W1e) time

25
Extending Sankowskis Method
Fast algorithm(using Storjohann)
Sankowski 06
SubmodularFlow
NetworkFlow
MinimumSpanningTree
SubmodularFunctionMinimization
MatroidIntersection
BipartiteMatching
Spanning TreePacking
MatroidGreedyAlgorithm
MatroidMatching
Non-Bip.Matching
MinimumArboresence
26
Extending Sankowskis Method
Fast algorithm(using Storjohann)
O(nr?-1 W1e)
This Paper
Sankowski 06
SubmodularFlow
O(n? W1e)
MinimumSpanningTree
SubmodularFunctionMinimization
Spanning TreePacking
MatroidGreedyAlgorithm
MatroidMatching
MinimumArboresence
27
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com