Temporal Constraint Propagation NonPreemptive Case - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Temporal Constraint Propagation NonPreemptive Case

Description:

Maximal delays. start(A) start(B) delay. start(A) end(B) delay. end(A) start(B) delay ... Minimal and maximal distances. Complexity ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 15
Provided by: claude68
Category:

less

Transcript and Presenter's Notes

Title: Temporal Constraint Propagation NonPreemptive Case


1
Temporal Constraint Propagation(Non-Preemptive
Case)

2
Outline
  • Variables
  • Relations between the variables
  • Temporal constraints
  • Time bounds
  • Minimal and maximal distances between time points

3
Variables (definition)
  • Three variables
  • start(A)
  • end(A)
  • duration(A)
  • for each activity A

4
Variables (implementation)
  • Finite domain (bitvector)
  • The domain of each variable is a finite set
  • Interval domain (pair of numbers)
  • The domain of each variable is an interval
  • startmin(A), startmax(A),
  • endmin(A), endmax(A)
  • durationmin(A), durationmax(A)

5
Relation between the variables
  • end(A) start(A) duration(A)
  • endmin(A) max(endmin(A), startmin(A)
    durationmin(A))
  • endmax(A) min(endmax(A), startmax(A)
    durationmax(A))
  • startmin(A) max(startmin(A), endmin(A) -
    durationmax(A))
  • startmax(A) min(startmax(A), endmax(A) -
    durationmin(A))
  • durationmin(A) max(durationmin(A), endmin(A) -
    startmax(A))
  • durationmax(A) min(durationmax(A), endmax(A) -
    startmin(A))

6
Temporal constraints
  • Simple precedences
  • start(A) start(B)
  • start(A) end(B)
  • end(A) start(B)
  • end(A) end(B)

7
Temporal constraints
  • Precedences with minimal delays
  • start(A) delay start(B)
  • start(A) delay end(B)
  • end(A) delay start(B)
  • end(A) delay end(B)

8
Temporal constraints
  • Precedences with fixed delays
  • start(A) delay start(B)
  • start(A) delay end(B)
  • end(A) delay start(B)
  • end(A) delay end(B)

9
Temporal constraints
  • Maximal delays
  • start(A) start(B) delay
  • start(A) end(B) delay
  • end(A) start(B) delay
  • end(A) end(B) delay

10
Propagation of time bounds
  • var(A) delay var(B)
  • varmin(B) max(varmin(B), varmin(A) delay)
  • varmax(A) min(varmax(A), varmax(B) - delay)
  • Complete propagation for bounded domains
  • Contradiction found when the constraints conflict
  • Best possible varmin(A) and varmax(A) found
    otherwise
  • Incremental variant of an operations research
    algorithm for project scheduling (PERT networks)

11
Propagation of time bounds
  • Complexity
  • For a consistent network O(nm) where n is the
    number of activities and m the number of
    constraints if constraints are propagated in the
    first-in first-out order
  • For an inconsistent network O(hn2) where h is
    the time horizon (can be reduced to O(n3) but not
    worth it in practice)

12
Minimal and maximal distances
  • x dxy y and y dyz z
  • implies x (dxy dyz) z
  • Useful to solve disjunctions of temporal
    constraints
  • x - 5 y
  • y 2 z
  • z 4 x OR v 3 w

13
Minimal and maximal distances
  • Matrix-based method
  • Whenever dxy is modified, update dwz to max(dwz,
    dwx dxy dyz)

14
Minimal and maximal distances
  • Complexity
  • O(n2) after each modification of the constraint
    network
  • O(n3) to initialize the matrix
Write a Comment
User Comments (0)
About PowerShow.com