Title: Manifold Parameterization
1Manifold Parameterization
- Lei Zhang, Ligang Liu, Zhongping Ji, Guojin Wang
- Department of Mathematics
- Zhejiang University
- Accepted as regular paper by CGI2006
2Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
3Reference
- O. Sorkine and D. Cohen-Or. Least-squares meshes.
In Proceedings of Shape Modeling International,
2004. - Lei Zhang, Ligang Liu, Zhongping Ji and Guojin
Wang. Manifold Parameterization. Accepted as
regular paper by Computer Graphics International,
2006. - V. Kraevoy and A. Sheffer. Cross-Parameterization
and Compatible Remeshing of 3D Models. SIGGRAPH,
2004.
4Reference
- M. Paone and Andrew Yuen. Mesh Fitting to Points.
Projects Presentations (PPT), Simon Fraser
University, Canada. - K. D. Cheng, W. P. Wang, H. Qin, K. K. Wong, H.
P. Yang and Y. Liu. Fitting Subdivision Surfaces
to Unorganized Point Data Using SDM. Proceedings
of the 12th Pacific Conference on Computer
Graphics and Applications, 2004.
5Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
6Parameterization
- Concept
- Parameterization is a one-to-one mapping from a
triangular mesh surface onto a suitable domain.
Domain
Mesh
7Planar Parameterization
- Select a plane as the parameterization domain for
an open mesh
8Spherical Parameterization
- Select a sphere as the parameterization domain
for 0-genus mesh
E. Praun and H. Hoppe, SIGGRAPH 04
9Manifold Parameterization
- Select a surface as parameterization domain for
another surface
Domain
Mesh
10Manifold Parameterization
11Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
12Least-squares Meshes
- O. Sorkine, D. Cohen-Or
- Tel Aviv University
- Proceeding of Shape Modeling International 2004
13Introduction
?
?
Connectivity
Mesh surface
Geometry
14Introduction
- Least-squares mesh
- Using a set of control points, approximate the
original mesh surface by its connectivity graph.
15Introduction
19851 vertices
200 control points
1000 control points
3000 control points
16Least-squares meshes
- Vertex conditions
- -Smooth condition L(vi)0, vi all vertices
- -Geometry condition vjcj, cj constraint
- L-Laplacian operator
Vi
Vj
17Least-squares meshes
- Laplacian Equation
- Smooth condition
- Geometry condition
vjcj
18Least-squares meshes
19Least-squares meshes
- Equation Solution
- The system is solved in least-squares sense.
A is sparse, and equation can be solved by TAUCS
library quite fast.
20Weighted Least-squares meshes
- Higher weights for control points
-
constraints
21Weighted Least-squares meshes
22Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
23Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
24Cross-Parameterization and Compatible Remeshing
of 3D Models
- V. Kraevoy and A. Sheffer
- SIGGRAPH 2004
25Introduction
- Given two mesh M1 and M2, obtain correspondence
via base meshes.
f1 F f2-1
M2
M1
f1
f2
F
B1
B2
26Main Steps
- Construct topologically identical path layouts
- No interior intersection
- Cyclical order
27Main Steps
- Get topologically identical base mesh
28Main Steps
- Map patch layout to base mesh
Mean value parameterization
f1
f2
29Main Steps
- Construct mapping between base mesh
F
Barycentric coordinate
30Main Steps
f1 F f2-1
M2
M1
f1
f2
F
B1
B2
31Examples
32Conclusion
- Indirect
- Boring path layout searching
- Time-consuming
33Overview
- Parameterization
- Least-squares Mesh
- Manifold Parameterization
- Similar destination, different way
- Similar way, different destination
34Mesh Fitting to Points
- M. Paone and A. Yuen
- Supervisor Richard (Hao) Zhang
- Simon Fraser University, Canada
- Project Report
35Fitting Subdivision Surfaces to Unorganized Point
Data Using SDM
- K. D. Cheng, W.P. Wang, H. Qin, K. K. Wong, H. P.
Yang and Y. Liu - PG 04
36Introduction
- Reconstruction of smooth surface from point
clouds - Tool Loop subdivision surface
- Measure SD (Squared Distance)
- H. Pottmann and M. Hofer. Geometry of the
Squared Distance Function to Curves and Surfaces.
Visualization and Mathematics III, Springer,
2003. -
37Loop Subdivision
Edge-Vertex
Vertex-Vertex
38Squared Distance
39Main Steps
Normalization
Target data points are scaled to .
40Main Steps
Normalization
Pre-computation
Compute distance field and curvatures at all data
points.
41Main Steps
Normalization
Pre-computation
Initial mesh
Use Marching Cubes to obtain an initial control
mesh.
42Main Steps
Normalization
Pre-computation
Initial mesh
Sampling
Get sample points on limit surface.
J. Stam. Evaluation of Loop Subdivision Surfaces.
SIGGRAPH99, course.
43Main Steps
Normalization
Pre-computation
Initial mesh
Sampling
Optimization
SDM error function
44Main Steps
Normalization
Pre-computation
Initial mesh
Optimization
Error evaluation
Sampling
Maximum approximation error
Average error
45Main Steps
Normalization
Pre-computation
Initial mesh
Optimization
Error evaluation
Sampling
Insert new control points to regions of large
errors.
46Examples
47Thank You