Manifold Parameterization - PowerPoint PPT Presentation

1 / 47
About This Presentation
Title:

Manifold Parameterization

Description:

Lei Zhang, Ligang Liu, Zhongping Ji, Guojin Wang. Department of ... Tel Aviv University. Proceeding of Shape Modeling International 2004. C. A. G. D. C. G. C ... – PowerPoint PPT presentation

Number of Views:144
Avg rating:3.0/5.0
Slides: 48
Provided by: zhan114
Category:

less

Transcript and Presenter's Notes

Title: Manifold Parameterization


1
Manifold Parameterization
  • Lei Zhang, Ligang Liu, Zhongping Ji, Guojin Wang
  • Department of Mathematics
  • Zhejiang University
  • Accepted as regular paper by CGI2006

2
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

3
Reference
  • O. Sorkine and D. Cohen-Or. Least-squares meshes.
    In Proceedings of Shape Modeling International,
    2004.
  • Lei Zhang, Ligang Liu, Zhongping Ji and Guojin
    Wang. Manifold Parameterization. Accepted as
    regular paper by Computer Graphics International,
    2006.
  • V. Kraevoy and A. Sheffer. Cross-Parameterization
    and Compatible Remeshing of 3D Models. SIGGRAPH,
    2004.

4
Reference
  • M. Paone and Andrew Yuen. Mesh Fitting to Points.
    Projects Presentations (PPT), Simon Fraser
    University, Canada.
  • K. D. Cheng, W. P. Wang, H. Qin, K. K. Wong, H.
    P. Yang and Y. Liu. Fitting Subdivision Surfaces
    to Unorganized Point Data Using SDM. Proceedings
    of the 12th Pacific Conference on Computer
    Graphics and Applications, 2004.

5
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

6
Parameterization
  • Concept
  • Parameterization is a one-to-one mapping from a
    triangular mesh surface onto a suitable domain.

Domain
Mesh
7
Planar Parameterization
  • Select a plane as the parameterization domain for
    an open mesh

8
Spherical Parameterization
  • Select a sphere as the parameterization domain
    for 0-genus mesh

E. Praun and H. Hoppe, SIGGRAPH 04
9
Manifold Parameterization
  • Select a surface as parameterization domain for
    another surface

Domain
Mesh
10
Manifold Parameterization
11
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

12
Least-squares Meshes
  • O. Sorkine, D. Cohen-Or
  • Tel Aviv University
  • Proceeding of Shape Modeling International 2004

13
Introduction
  • Mesh

?
?
Connectivity
Mesh surface
Geometry


14
Introduction
  • Least-squares mesh
  • Using a set of control points, approximate the
    original mesh surface by its connectivity graph.

15
Introduction
19851 vertices
200 control points
1000 control points
3000 control points
16
Least-squares meshes
  • Vertex conditions
  • -Smooth condition L(vi)0, vi all vertices
  • -Geometry condition vjcj, cj constraint
  • L-Laplacian operator

Vi
Vj
17
Least-squares meshes
  • Laplacian Equation
  • Smooth condition
  • Geometry condition

vjcj
18
Least-squares meshes
  • Example

19
Least-squares meshes
  • Equation Solution
  • The system is solved in least-squares sense.

A is sparse, and equation can be solved by TAUCS
library quite fast.
20
Weighted Least-squares meshes
  • Higher weights for control points

constraints
21
Weighted Least-squares meshes
22
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

23
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

24
Cross-Parameterization and Compatible Remeshing
of 3D Models
  • V. Kraevoy and A. Sheffer
  • SIGGRAPH 2004

25
Introduction
  • Given two mesh M1 and M2, obtain correspondence
    via base meshes.

f1 F f2-1
M2
M1
f1
f2
F
B1
B2
26
Main Steps
  • Construct topologically identical path layouts
  • No interior intersection
  • Cyclical order

27
Main Steps
  • Get topologically identical base mesh

28
Main Steps
  • Map patch layout to base mesh

Mean value parameterization
f1
f2
29
Main Steps
  • Construct mapping between base mesh

F
Barycentric coordinate
30
Main Steps
  • Result parameterization

f1 F f2-1
M2
M1
f1
f2
F
B1
B2
31
Examples
32
Conclusion
  • Indirect
  • Boring path layout searching
  • Time-consuming

33
Overview
  • Parameterization
  • Least-squares Mesh
  • Manifold Parameterization
  • Similar destination, different way
  • Similar way, different destination

34
Mesh Fitting to Points
  • M. Paone and A. Yuen
  • Supervisor Richard (Hao) Zhang
  • Simon Fraser University, Canada
  • Project Report

35
Fitting Subdivision Surfaces to Unorganized Point
Data Using SDM
  • K. D. Cheng, W.P. Wang, H. Qin, K. K. Wong, H. P.
    Yang and Y. Liu
  • PG 04

36
Introduction
  • Reconstruction of smooth surface from point
    clouds
  • Tool Loop subdivision surface
  • Measure SD (Squared Distance)
  • H. Pottmann and M. Hofer. Geometry of the
    Squared Distance Function to Curves and Surfaces.
    Visualization and Mathematics III, Springer,
    2003.

37
Loop Subdivision
Edge-Vertex
Vertex-Vertex
38
Squared Distance
39
Main Steps
Normalization
Target data points are scaled to .
40
Main Steps
Normalization
Pre-computation
Compute distance field and curvatures at all data
points.
41
Main Steps
Normalization
Pre-computation
Initial mesh
Use Marching Cubes to obtain an initial control
mesh.
42
Main Steps
Normalization
Pre-computation
Initial mesh
Sampling
Get sample points on limit surface.
J. Stam. Evaluation of Loop Subdivision Surfaces.
SIGGRAPH99, course.
43
Main Steps
Normalization
Pre-computation
Initial mesh
Sampling
Optimization
SDM error function
44
Main Steps
Normalization
Pre-computation
Initial mesh
Optimization
Error evaluation
Sampling
Maximum approximation error
Average error
45
Main Steps
Normalization
Pre-computation
Initial mesh
Optimization
Error evaluation
Sampling
Insert new control points to regions of large
errors.
46
Examples
47
Thank You
Write a Comment
User Comments (0)
About PowerShow.com