Soft Drinks - PowerPoint PPT Presentation

About This Presentation
Title:

Soft Drinks

Description:

(4) Turnbull, Bianca; Matisoo-Smith, Elizabeth. Taste sensitivity to 6-n ... (27) Beauchamp, Gary, K.; Reed, Danielle, R.; Tordoff, Michael, G.; Bachmanov, ... – PowerPoint PPT presentation

Number of Views:8078
Avg rating:3.0/5.0
Slides: 38
Provided by: kasd4
Category:

less

Transcript and Presenter's Notes

Title: Soft Drinks


1
(No Transcript)
2
Sugary foods
Registered trademarks of PepsiCo, Inc., 2007
(www.pepsi.com www.mtdew.com www.mugrootbeer.com
), Coca-Cola Company, 2007 (www.thecoca-colacompan
y.com), The Beverage Partners Worldwide, 2007
(www.nestea.com) and Snapple Beverage
Corporation, 2006 (www.snapple.com), The Hershey
Company, 2007 (www.hersheys.com), Mars, Inc.,
2006 (www.snickers.com www.m-ms.com
www.milkywaybar.com )
3
Sweet Chemicals
Chemical Name Structure
Glucose
Sucrose
Fructose
www.chemfinder.com
4
Obesity Map--2006
Percentage of obese adults (gt30BMI)
Overweight and Obesity. Center for Disease
Control and Prevention. 2007. (accessed
8/5/07) http//www.cdc.gov/nccdphp/dnpa/obesity/tr
end/maps/index.htm
5
Dietary options
  • Control consumption of sugars
  • Simple carbohydrates
  • Usage of low calorie or zero calorie sweeteners
  • Splenda
  • Equal
  • Sweetn Low

Registered trademark of Cumberland Packing Corp.
2003 (www.sweetnlow.com) The Merisant Company,
2006 (www.equal.com) McNeil Nutritionals, LLC,
2007 (www.splenda.com)
6
Artificial Sweeteners
Sweetener Structure
Aspartame
Saccharin
Sucralose
www.chemfinder.com
7
Synthesis of Sucralose
8
Artificial sweeteners
  • Consumers are hesitant due to health issues
  • Cancer concerns (saccharin/aspartame)
  • Side effects
  • Headaches
  • Diarrhea

9
Dietary market
  • In need of a natural low calorie or zero calorie
    sweetener
  • Sweet Proteins?

10
Neoculin A Sweet-Tasting, Taste-Modifying Protein
  • and its Interaction with T1R2 T1R3 of the Sweet
    Taste Receptor Family

Jeffrey T. Kushner University of Pennsylvania MCE
Program Cohort 6 Thesis Presentation
11
Research Focus
  • Features of Neoculin and interaction with T1R3
    receptor
  • Regions of Neoculin that elicit sweet taste
    response with T1R2T1R3 complex
  • Cause of Taste Modifying Function

12
Taste Overview
  • Taste Map No Longer
  • Refined knowledge since 2001
  • Five Major Tastes

Marieb, Elaine, N. Chemical senses taste and
smell. Human Anatomy and Physiology, 2nd Ed.
Benjamin Publishing Company. New York, 1992 pp
496.
13
Taste Overview
Sour
Salt
  • Different mechanisms for simple tastes vs.
    complex tastes

Adapted from Lindeman, Bernd. Taste Reception.
Physiological Reviews. 1996, 76, pp751.
14
Taste Overview
  • Series of events to elicit an action potential

University of Arizona, 2007 (www.neurobio.arizona.
edu)
15
Testing Taste
Human Embryonic Kidney Cells
Taste Testing Panel
Nakajima, et al. Appl. Environ. Microbiol. 2006,
72, pp 3720.
Electric Tongue
Lotus Bakeries NV, 2007 (www.lotusbakeries.com)
Legin,et al. Anal. Bioanal. Chem. 2004, 380, pp
42.
16
Taste Receptor Overview
  • Homodimers
  • T1Rs
  • Heterodimer
  • T1R2T1R3
  • Sweet taste receptor complex
  • Venus flytrap domain
  • Sweeteners
  • Proteins

Large non-protein sweeteners
Small sweeteners
7-transmembrane helix-receptor
proteins
Adapted from Temussi, Pierandrea. J. Mol. Recog.
2006, 19, pp 188-199.
17
Neoculin Overview
  • Acidic Subunit
  • 114 amino acids
  • From Curculigo latifolia plant (West Malaysia)
  • Basic Subunit
  • 113 amino acids

PDB ID 2d04.
18
Features of Neoculin
  • Side-by-side comparison

Yellow line--hydrophobicity purple
line--hydrophilicity
Acidic Subunit
Basic Subunit
Bowen, R. Protein hydropathicity plots. 1998.
http//arbl.cvmbs.colostate.edu/molkit/hydropathy/
(accessed 7/22/07)
19
Features of Neoculin
Rotated 180º
Adapted from Esposito, et al. J. Mol. Biol.
2006, 360, pp 452.
  • Electrostatic Potential
  • Potential energy associated with electric fields
  • NAS--yellow NBS--orange
  • Blue--basic red--acidic

20
Protonations
Histidine
Aspartate
21
Features of the T1R3
Inactive
Active
  • Cysteine-rich region
  • Negatively charged
  • cavity

Adapted from Temussi, Pierandrea. J. Mol. Recog.
2006, 19, pp 192
22
Specifics of Neoculin
  • Acidic Loops
  • Stability
  • Taste Modifying

Basic Loops Bind with T1R3 to elicit sweet
response
Moreland, J.L. Gramada, A. Buzko, O.V. Zhang,
Qing Bourne, P.E. Molecular biology toolkit
(MBT) a modular platform for developing
molecular visualization applications. BMC
Bioinformatics, 621 (2005)
23
Loop Differences
Neoculin Acidic Subunit--Chain A 1 DSVLLSGQTL
YAGHSLTSGS YTLTIQNNCN LVKYQHGRQI
WASDTDGQGS 51 QCRLTLRSDG NLIIYDDNNM VVWGSDCWGN
NGTYALVLQQ DGLFVIYGPV 101LWPLGLNGCR
SLN Neoculin Basic Subunit--Chain B 1
DNVLLSGQTL HADHSLQAGA YTLTIQNKCN LVKYQNGRQI
WASNTDRRGS 51 GCRLTLLSDG NLVIYDHNNN
DVWGSACWGD NGKYALVLQK DGRFVIYGPV 101LWSLGPNGCR
RVNG
Adapted from PDB ID 2d04.
  • 56 amino acids found in four loops
  • Only 10 residue differences

24
Amino Acid Difference
25
Important Amino Acids
Amino Acid Structure Hydropathicity Basicity
Tyrosine Hydrophobic Neutral
Glycine Neutral Neutral
Glutamine Hydrophilic Neutral
Histidine Hydrophilic Slightly Basic
Aspartic Acid Strongly hydrophilic Acidic
Arginine Hydrophilic Basic
www.chemfinder.com
26
Important differences
Acidic Subunit Basic Subunit Outcome
1st Fold Hydrophobic (Tyr, Gly) Hydrophilic (His, Asp) Hydropathicity change
3rd Fold Neutral pH (Gly, Gln, Gln) Basic pH (Arg, Arg) Change in pH character
27
Docking Model
  • Neoculin bonded to T1R3 utilizing wedge site
    binding
  • Types of interactions
  • Number of surface interactions determines
    sweetness

Shimizu-Ibuka,et, al. Crystal structure of
Neoculin insights into its sweetness and
taste-modifying activity. J Mol. Biol. 2006,
359, pp 155
28
Taste-Modifying
  • Possibly due to drastic change in electrostatic
    potential of heterodimer
  • OR
  • Protonation of only acidic unit

PDB ID 2d04.
29
Conclusions
  • Binding between NBS T1R3 at loop region
  • NAS aids conformational change
  • Protonated form of Neoculin changes conformation
    for Taste-Modifying activity

30
Future Research in Taste
  • Crystallize tastant bonded with taste receptor
  • Identify specific amino acid regions on Taste
    Receptor involved in binding
  • bonding patterns and behaviors between taste
    receptor and tastants
  • Pursue mass extracellular production of Neoculin

31
(No Transcript)
32
References
  • (1) Marieb, Elaine, N. Chemical senses taste
    and smell. Human
  • Anatomy and Physiology, 2nd Ed. Benjamin
    Publishing Company. New York, 1992 pp 496-499.
  • (2) Shallengerger, Robert, S. Taste recognition
    chemistry. Pure Appl. Chem. 1997, 69, pp
    659-666.
  • (3) Brownlee, Christen. Sweet finding. Sci News.
    2006, 170, p 9.
  • (4) Turnbull, Bianca Matisoo-Smith, Elizabeth.
    Taste sensitivity to 6-n-
  • propylthiouracil predicts acceptance of
    bitter-tasting spinach in 3-6y-old children. Am.
    J .Clin. Nutr. 2002, 76, pp 1101-1105.
  • (5) Margolskee, Robert, F. Molecular mechanisms
    of bitter and sweet taste
  • Transduction. J. of Biol. Chem. 2002, 277, pp
    1-4.
  • (6) Reinberger, Stefanie. Bitter could be
    better. Sci. Am. Mind. 2006, 17, p 3.
  • (7) Matsunami, Hiroaki Amrein, Hubert. Taste
    perception how to
  • make a gourmet mouse. Cur. Biol. 2004, 14, pp
    R118-R120.
  • (8) Temussi, Pierandrea. The history of sweet
    taste not exactly a piece of

33
References (cont.)
  • (10) Nakajima, Ken-ichiro. Askura, Tomiko.
    Oike, Hideaki. Morita, Yuji.
  • Shimizu-Ibuka, Akiko. Misaka, Takumi. Sormachi,
    Hiroyuki. Arai, Soichi. Abe, Keiko. Neoculin,
    a taste-
  • modifying protein, is recognized by human sweet
    taste receptor. Chem. Senses. 2006, 17, pp
    1241-1244.
  • (11) Shimizu-Ibuka, Akiko. Morita, Yuji.
    Terada, Tohru. Asakura, Tomiko.
  • Nakajima, Ken-ichiro. Iwata, So. Misaka,
    Takumi. Sorimachi, Hiroyuki. Arai, Soichi.
    Abe, Keiko. Crystal
  • structure of Neoculin insights into its
    sweetness and taste-modifying activity. J Mol.
    Biol. 2006, 359, pp 148-
  • 158.
  • (12) Garrett, R. H. and Grisham, C.M. Amino
    acids and proteins. Principles of Biochemistry
    with a Human
  • Focus, updated Third Edition. Brooks/Cole.
    Belmont, CA, 2007. pp 590-627.
  • (13) McMurry, John. Casellion, Mary, E. Amino
    acids and proteins. Fundamentals of General,
    Organic, and
  • Biological Chemistry Fourth Edition. Pearson
    Education, Inc. New Jersey. 2003, pp 500-559.
  • (14) Pavia, Donald, L. Lampman, Gary, M. Kriz,
    George, S. Mass spectrometry and NMR.
    Introduction to
  • Spectroscopy, Third Edition. Thompson Learning,
    Inc. 2001, pp 10 102 256 390.
  • (15) Sugita, M. Taste perception and coding in
    the periphery. Cell. Mol. Life Sci. 2006, 63,
    pp 2000-20155.

34
References (cont.)
  • (18) Morini, Gabriella. Bassoli, Angela. and
    Temussi, Piero, A. From small
  • sweteners to sweet proteins anatomy of the
    binding sites of the human T1R2_T1R3 receptor. J
    Med. Chem. 2005, 48, pp5520-5529.
  • (19) Nie, Yiling. Vigues, Stephan. Hobbs,
    Jeanette, R. Conn, Graeme, L.
  • Munger, Steven, D. Distinct contributions of
    T1R2 and T1R3 taste receptor subunits to the
    detection of sweet stimuli. Curr. Biol. 2005,
  • 15, pp 1948-1952.
  • (20) Walters, D. Eric. Hellekant, Goran.
    Interactions of the sweet protein Brazzein with
    the sweet taste receptor. J. Agric. Food Chem.
  • 2006, 54, pp 10129-10133.
  • (21) Jiang, Peihua. Ji, Qingzhou. Liu, Zhan.
    Snyder, Lenore, A. Benard, Lumie, M.J.
    Margolskee, Robert, F. Max, Marianna. The
  • cysteine-rich region of T1R3 determines responses
    to intensely sweet proteins. J. Biol. Chem.
    2004, 279, pp 45068-45075.
  • (22) PDB ID 2d04. Shimizu-Ibuka, A. Morita,
    Y. Terada, T. Asakura, T. Nakajima, K. Iwata,
    S. Misaka, T. Sorimachi, H. Arai, S.
  • Abe, K. Crystal structure of Neoculin, a sweet
    protein with taste-modifying activity. J. Mol.
    Biol. 2006, 359, pp 148-158.
  • (23) Moreland, J.L. Gramada, A. Buzko, O.V.
    Zhang, Qing Bourne, P.E. Molecular biology
    toolkit (MBT) a modular platform for
  • developing molecular visualization applications.
    BMC Bioinformatics, 621 (2005)

35
References (cont.)
  • (26) Froloff, Nicolas. Faurion, Annick.
    MacLeod, Patrick. Multiple human taste receptor
    sites a molecular modeling approach. Chem.
  • Senses. 1997, 21, pp 425-445.
  • (27) Beauchamp, Gary, K. Reed, Danielle, R.
    Tordoff, Michael, G. Bachmanov, Alexander, A.
    Genetics of taste. Amer.Chem.Soc.
  • 2002, Chapter. 4, pp 40-51.
  • (28) Cambell, Neil, A. Recombinant DNA.
    Biology, Third Edition. The Benjamin/Cummings
    Publishing Company, Inc. 1993, pp 390-
  • 399.
  • (29) Roy, Glenn. McDevitt, John, T. In vitro
    taste sensors technology and applications.
    Amer.Chem.Soc. 2002, Chapter. 20, pp 262-
  • 275.
  • (30)Riul, Antonio, Jr. Malmegrim, Roger, R.
    Fonseca, Fernando, J. Mattoso, Luiz, H.C.
    Nano-assembled films for taste sensor
  • application. Artif. Organs. 2003, 27, pp
    469-472.
  • (31) Jensen, Ric. Electronic tongue measure food
    flavors and water chemistry. Envir. Health,
    1999, pp 38.
  • (32) Legin, Andrey. Rudnitskaya, Alisa.
    Clapham, David. Seleznev, Boris. Lord, Kevin.
    Vlasov, Yuri. Electronic tongue for
  • pharmaceutical analytics quantification of
    tastes and masking effects. Anal. Bioanal. Chem.
    2004, 380, pp 36-45.

36
References (cont.)
  • (35) PDB ID 1gxv. Refaee, M. Tezuka, T.
    Akasak, K. Williamson, M. Pressure-dependent
    changes in the solution structure of hen
  • egg-white lysozyme. J.Mol.Biol. 2003, 327, pp
    857.
  • (36) PDB ID 1fa3. Spadaccini, R. Crescenzi,
    O. Tancredi, T. DeCasamassimi, N. Saviano, G.
    Scognamiglio, R. DiDonato, A.
  • Temussi, P.A. Solution structure of a sweet
    protein NMR study of MNEI, a single chain
    Monellin. J.Mol.Biol. 2001, 305, pp 505-514.
  • (37) PDB ID 2blr. Nanao, M.H. Sheldrick, G.M.
    Ravelli, R.B. Improving radiation-damage
    substructure of Rip. Acta.Crystallogr.
  • 2005, 61, pp 1227.
  • (38) Masada, Tetsuya. Kitabatake, Naofumi.
    Developments in biotechnological production of
    sweet proteins. J Biosci. Bioeng. 2006,
  • 102, pp 375-389.
  • (39) Masuda, Tetsuya. Ide, Nobuyuki.
    Kitabatake, Naofumi. Structure-sweetness
    relationship in egg white lysozyme role of
    lysine
  • and arginine residues on the eliciatation of
    lysozyme sweetness. Chem. Senses. 2005, 30 pp
    667-681.
  • (40) De Capua, Antonia. Goodman, Murray. Amino,
    Yusuke. Saviano, Michele. and Benedetti,
    Ettore. Conformational analysis of
  • aspartame-based sweeteners by NMR spectroscopy,
    molecular dynamics simulations, and x-ray
    diffraction studies. ChemBioChem.
  • 2006, 7, pp 377-387.

37
References (cont.)
  • (42) Birch, Gordon, G. Role of water in sweet
    taste chemoreception. Pure Appl. Chem. 2002,
    74, pp 1103-
  • 1108.
  • (43) Chemical Reference Database ChemFinder.
    CambridgeSoft Corporation, 2004.
    www.chemfinder.com
  • (accessed 7/28/07)
  • (44) Tully, William Vernon, Nicholas, M. Walsh,
    Peter, A. Process for the preparation of
    1,6-dichloro-1,6-
  • dideoxy-.beta.-D-fructofuranosyl-4-chloro-4-deoxy-
    .alpha. United States Patent4,801,700.
    January 31, 1989
  • (45) Acid-Base Properties of Proteins.
    Chemistry A Project of the American Chemical
    Society. Freeman. New
  • York, 2005, pp 619-621.
Write a Comment
User Comments (0)
About PowerShow.com