Introduction to Industrial Hygiene - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction to Industrial Hygiene

Description:

Industrial Hygiene is the application of ... Metallica Quotes ' ... Eating/drinking in areas where airborne hazards exist. Lighting cigarettes with dirty hands ... – PowerPoint PPT presentation

Number of Views:150
Avg rating:3.0/5.0
Slides: 52
Provided by: cgei
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Industrial Hygiene


1
Introduction to Industrial Hygiene
  • Safety Management
  • TM 650
  • Carter J. Kerk
  • Industrial Engineering Department
  • South Dakota School of Mines
  • Summer 2009

2
Introduction to Industrial Hygiene
  • Read Asfahl
  • Chapter 9, Health and Toxic Substances
  • Chapter 10, Environmental Control and Noise

3
Industrial Hygiene
  • Part science, part art
  • Industrial Hygiene is the application of
    scientific principles in the workplace to prevent
    the development of occupational disease or injury
  • Requires knowledge of chemistry, physics,
    anatomy, physiology, mathematics

4
IH Topics
  • Toxicology
  • Occupational Health Standards
  • Airborne Hazards
  • Indoor Air Quality
  • Skin Disorders
  • Noise Exposure
  • Radiation
  • Thermal Stress
  • Anatomy
  • Biohazards
  • Chemicals
  • Illumination
  • Personal Protective Equipment
  • Ventilation
  • Vibration
  • Sampling

5
History of IH
  • Disease resulting from exposure to chemicals or
    physical agents have existed ever since people
    chose to use or handle materials with toxic
    potential
  • In the far past, causes were not always recognized

6
Earliest Recordings
  • Lead poisoning among miners by Hippocrates, 4th
    century BC
  • Zinc and sulfur hazards by Pliny the Elder, 3rd
    century BC

7
The Original Metallica
  • Georgius Agricola published a 12 volume set in
    1556, De Re Metallica
  • Town physician in Saxony
  • Silver mining
  • Described diseases of lungs, joints, eyes
  • Woodcuts (see next slide)

8
(No Transcript)
9
Metallica Quotes
  • If the dust has corrosive qualities, it eats
    away at the lungs, and implants consumption in
    the body
  • Later determined to be silicosis, tuberculosis,
    and lung cancer

10
Metallica cont.
  • A young American named Herbert C. Hoover and his
    wife, L.H. Hoover, translated Agricolas work
    into English.
  • The translation was published in 1912
  • Hoover graduated from Stanford in 1891 as a
    Mining Engineer
  • Hoover served as the 31st president of the US
    (1929 1933)

11
Paracelsus
  • Published work describing mercury poisoning of
    miners in 1567
  • His famous quote, All substances are poisons
    there is none which is not a poison. The right
    dose differentiates a poison and a remedy.
  • This provided the basis for the concept of the
    dose-response relationship.

12
Dose-Response Relationship
  • The toxicity of a substance depends not only on
    its toxic properties, but also on the amount of
    exposure, or the dose
  • Paracelsus differentiated between
  • Chronic (low-level, long-term) poisoning
  • Acute (high-level, short-term) poisoning

13
Bernardino Ramazzini (1633-1714)
  • Wrote a book, De Morbis Artificum (Diseases of
    Workers), starting the field of occupational
    medicine
  • Urged physicians to ask the question, Of what
    trade are you?
  • He described diseases associated with various
    lower-class trades, such as corpse carriers and
    laundresses.

14
Other Pioneers around 1770
  • Sir George Baker
  • Linked Devonshire colic to lead in cider
  • Percival Pott
  • Linked soot exposure and scrotal cancer in
    chimney sweeps

15
The Mad Hatter
  • Lewis Carrolls Alice in Wonderland (1865)
  • Mad Hatter exhibited symptoms of mercury
    poisoning, such as mental and personality changes
    marked by depression and tendency to withdraw
  • Mercury was used in processing hides made into
    hats
  • Bars were installed on windows at hat factories
    presumably to prevent afflicted workers from
    leaping during bouts of depression

16
Protection Starts to Arrive
  • English Factory Act, 1833, allows injured workers
    to receive compensation
  • English Factory Inspectorate, 1878
  • US Workers Compensation started in 1908-1915 in
    several states (state programs, not federal)
  • Occupational Safety Health Act enacted in 1970
    creating OSH Administration
  • Created regulations, inspections, recordkeeping,
    enforcement, etc.

17
Birth of Industrial Hygiene
  • A few industrial hygienists were practicing in
    early 1900s
  • Physicians sometimes saw the industrial hygienist
    as a threat to their realm of expertise
  • Dr. Alice Hamilton was a pioneer Occupational
    Physician and female pioneer. She helped foster
    the field of IH in the US
  • American Industrial Hygiene Association (AIHA)
    formed in 1939

18
Industrial Hygiene
  • Other terms
  • Occupational Hygiene
  • Environmental Hygiene
  • Environmental Health

19
Scope of IH
  • Recognition, Evaluation, and Control of hazards
    or agents
  • Chemical Agents
  • Dusts, mists, fumes, vapors, gases
  • Physical Agents
  • Ionizing and nonionizing radiation, noise,
    vibration, and temperature extremes
  • Biological Agents
  • Insects, molds, yeasts, fungi, bacteria, viruses
  • Ergonomic Agents
  • Monotony, fatigue, repetitive motion

20
Control of Agents
  • Controls in this order of preference
  • Engineering Controls
  • Engineering changes in design, equipment,
    processes
  • Substituting a non-hazardous material
  • Administrative Controls
  • Reduce the human exposure by changes in
    procedures, work-area access restrictions, worker
    rotation
  • Personal Protective Equipment / Clothing
  • Ear plugs / muffs, safety glasses / goggles,
    respirators, gloves, clothing, hard-hats

21
1. Recognition of health hazards
  • Walk-through survey with someone knowledgeable of
    the processes
  • Regular intervals, keep records
  • Planning stage reviews
  • Modification reviews
  • MSDS reviews

22
2. Evaluation of hazards
  • Measurements
  • Air sampling, noise meters, light meters, thermal
    stress meters, accelerometers (vibration)
  • Calculation of dose
  • Level and duration of exposure
  • Keep records

23
3. Control of Hazards (Prioritized)
  • 1 Engineering
  • Substitute a less hazardous material, local
    exhaust ventilation
  • 2 Administrative
  • Worker rotation, training
  • 3 Personal Protective Equipment
  • Respirators, gloves, eye protection, ear
    protection, etc.

24
4. Recordkeeping
  • Important in all phases of the program
  • Often required by regulation
  • 29 CFR 1904
  • Increase program effectiveness
  • Useful in legal challenges

25
5. Employee training
  • Effective component if total program is
    implemented and engineering controls are first
    established
  • Often required by regulation
  • Right to Know or Hazard Communication Standard
    29 CFR 1910.1200
  • Regular intervals
  • Keep it interesting and effective, use a variety
    of techniques
  • Keep records of dates, individuals, topics,
    effectiveness

26
6. Program review
  • Regular intervals (yearly, semi-annual)
  • Review the written program as well as the
    implementation
  • Updates for new regulations, new chemicals, new
    processes, or any changes
  • Audit components of the program
  • Internal OSHA inspection
  • Involve employees, consultants, management

27
Toxicology

28
Definitions
  • Toxicity The ability of a substance to cause
    harm or adversely affect an organism
  • Toxicology The science and study of harmful
    chemical interactions on living tissue

29
Occupational Toxicology
  • Workplace exposure to chemicals
  • You or someone you know has probably experienced
    an episode of toxicology
  • Injury or death due to
  • Smoke inhalation
  • Confined space incident
  • Ingestion or absorption of a chemical

30
The Dose-Response Relationship
  • A time of exposure (dose) to a chemical, drug, or
    toxic substance, will cause an effect (response)
    on the exposed organism
  • If the amount or intensity of the dose increases,
    there will be a proportional increase in the
    response

31
Definitions
  • Dose The amount of a substance administered (or
    absorbed), usually expressed in milligrams of
    substance per kilogram of the exposed organism
    (mg/kg)
  • Response The effect(s) of a substance may be
    positive or negative

32
Dose Response Curve
33
Acute and Chronic Terminology Exposure as well
as Response
  • Acute exposure short time / high concentration
  • Chronic exposure long-term, low concentration
  • Acute response rash, watering eyes, cough from
    brief exposure to ammonia
  • Chronic response emphysema from years of
    cigarette smoking

34
Possible Response Levels
  • No response at low dosage levels there may be
    no response at all
  • Threshold dose the lowest level of dosage at
    which a response is manifested
  • NOAEL no observed adverse effect level
  • NEL no effect level
  • Above threshold dose response can be positive
    up to a point and then could become toxic to the
    organism
  • Different people or organisms will exhibit a
    variety of responses

35
Latency Period
  • Long delay between exposure and disease
  • Some diseases may not develop for many years
  • Lung cancer may occur as much as 30 years after
    exposure to asbestos
  • This makes animal studies and epidemiological
    studies even more difficult, but also very
    valuable

36
Routes of Exposure
  • Inhalation
  • Ingestion
  • Absorption through the skin
  • Less common
  • Injection
  • Absorption through eyes and ear canals

37
(No Transcript)
38
Inhalation
  • Most common route of entry into body
  • Therefore our area of highest concern
  • Lungs are designed for efficient gas exchange
    between the air and bloodstream
  • Lungs have up to 1000 square feet of exchange
    area (about 32 feet by 32 feet)
  • Normal days breathing volume 8 cu ft
  • Therefore great potential for toxins to enter
    bloodstream

39
(No Transcript)
40
Skin Absorption (2nd most important route)
  • Skin surface area is about 20 square feet (4.5 ft
    by 4.5 ft)
  • Compare to 1000 sq ft for lungs
  • Materials can be absorbed into blood stream just
    below the skin surface or toxins can be stored in
    fat deposits
  • Obviously workers can easily expose their hands
    into solvents, oils, chemicals, etc., plus these
    materials can be sprayed or rubbed on other parts
    of the body
  • Many chemicals are either soluble in water or in
    oil (fat, lipid)
  • The skin easily absorbs lipid-soluble materials
  • Solvents
  • Water-soluble materials are not easily absorbed
  • Lipid layer on skin provides a barrier

41
(No Transcript)
42
Ingestion (3rd most important route)
  • Ingestion is not usually intentional
  • Unintentional ingestion
  • Failure to wash hands and face before meals
  • Eating/drinking in areas where airborne hazards
    exist
  • Lighting cigarettes with dirty hands
  • Application of cosmetics
  • Use of chewing tobacco or gum in contaminated
    areas

43
Ingestion
  • The digestive tract is moist and designed for
    efficient absorption
  • Surface area of intestines is greatly increased
    by small projections (villi)
  • Thin surfaces, highly vascularized
  • Materials easily transferred to bloodstream

44
(No Transcript)
45
Injection
  • Less common
  • Possible hazards
  • Outdoor work, construction sites, hazardous waste
    sites, plants, animals, reptiles, insects,
    abrasions, puncture wounds, cuts

46
Absorption into eyes and ears
  • Much less common but possible
  • Moist surfaces

47
Distribution of Toxins
  • Once toxins are in the body, there are several
    mechanism of movement and action
  • Inhalation
  • Toxics may enter bloodstream
  • Toxics may irritate or scar lung tissues directly
  • Skin Absorption
  • Toxics may enter bloodstream
  • Toxics may irritate, corrode or burn skin directly

48
Once absorbed into the body, toxins can move to
other tissues and organs through various ways
  • Filtration
  • Toxins move through membrane pores
  • Diffusion
  • Movement from higher concentration to lower
    concentration
  • Active transport
  • Movement across a membrane otherwise impermeable
    by a transport mechanism
  • Chemical reaction or carrier molecule, requires
    energy
  • Phagocytosis
  • Toxins eat or engulf other cells or by use of
    white blood cells

49
Liver
  • Important in metabolism, energy storage, protein
    synthesis
  • Receives blood from digestive tract and works to
    concentrate, transform, and excrete substance
    (both good and bad toxins)
  • Thus produces bile (enriched) which is returned
    to the intestines

50
Kidneys
  • Receive 25 of cardiac output for filtration
  • Primarily for elimination of water soluble
    molecules
  • Large molecules (proteins) and lipid soluble
    materials are reabsorbed through the tubules of
    the nephron
  • Nephron functional unit of the kidney (see next
    slide
  • Materials pass by filtration, diffusion, active
    transport

51
References
  • Nims DK. Basics of Industrial Hygiene. John
    Wiley Sons, Inc., 1999. ISBN 0471-29983-9
Write a Comment
User Comments (0)
About PowerShow.com