Traverse Computations - PowerPoint PPT Presentation

1 / 42
About This Presentation
Title:

Traverse Computations

Description:

210 15' 30' - 110 05' 30' = 100 10' 00' ERE 371. Directions of Traverse Lines. A ... 10053.143 m. 10015.181 m. 10000.000 m. 10058.144 m. X Coordinate. 100 ... – PowerPoint PPT presentation

Number of Views:497
Avg rating:4.0/5.0
Slides: 43
Provided by: lindiqua
Category:

less

Transcript and Presenter's Notes

Title: Traverse Computations


1
Traverse Computations
  • Purpose
  • Approaches to adjustment

2
Compass Rule Adjustment
  • Procedure

3
Example Traverse
B
38.576 m
110 05' 00"
C
30.141 m
111 25' 30"
25.605 m
65 33' 30"
A
72 54' 30"
58.437 m
D
4
Balancing Angles
  • Purpose
  • Procedure

5
Methods for Adjusting Angles
  • Several possibilities
  • Selection of method

6
Equal Corrections
  • Issue
  • Distribute closure

7
Equal Corrections to Angles
  • Advantages

8
Example Traverse Balanced Angles
B
38.576 m
110 05' 30"
C
30.141 m
111 26' 00"
25.605 m
65 33' 30"
A
72 55' 00"
58.437 m
D
9
Directions of Lines
  • Use adjusted angles to compute line direction
  • Azimuths or bearings?

10
Computing Directions
B
direction?
110 05' 30"
C
30 15' 30"
A
11
Compute Directions Clockwise Around Traverse
B
100 10' 00"
110 05' 30"
C
30 15' 30"
Assume or find azimuth of AB 30 15' 30"
Compute azimuth of BA (azimuth of AB ? 180)
210 15' 30" Subtract angle at B 210 15' 30"
- 110 05' 30" 100 10' 00"
A
12
Directions of Traverse Lines
13
Directions of Traverse Lines
B
100 10' 00"
C
30 15' 30"
168 44' 00"
A
275 49' 00"
D
14
Departures and Latitudes
  • Departures (deps)
  • Latitudes (lats)

15
Computing Departures Latitudes
  • Compute by Dep L sin ? Lat L cos ?
  • Where ? azimuth L length of line

North (Y)
G
?
Lat. FG L cos?
L
F
East (X)
Dep. FG L sin?
16
Example Traverse
B
100 10' 00"
38.576 m
C
30 15' 30"
30.141 m
168 44' 00"
25.605 m
A
58.437 m
275 49' 00"
D
17
Example Traverse
Departure Length x sin (azimuth)e.g. Dep. AB
30.141 m x sin(30 15' 30") Latitude Length x
cos (azimuth) e.g. Lat. AB 30.141 m x cos (30
15' 30")
18
Closure in Deps and Lats
  • For mathematically closed traverse
  • Geometrically closed traverse
  • Closure difference between known/computed
    position
  • Linear error of closure (LEC)
  • Relative error of closure (REC)

19
Linear Error of Closure
?dep 0.0248 m
A'
?lat 0.0363 m
0.044 m
A
20
Traverse Adjustment
  • Goal
  • Some methods
  • Arbitrary method
  • Compass (Bowditch) rule
  • Least squares adjustment

21
Readings
  • Chapter 10 sections 10.1 10.8

22
Compass Rule Adjustment
  • Application
  • Works for traverses with limited number of lines

23
Compass Rule
  • Proportion is rearranged for computational
    efficiency

24
Compass Rule Balance Departures
Corrected departure Departure Departure
correctione.g. Corrected departure AB 15.1880
(-0.0049) 15.183 m
25
Compass Rule Balance Latitudes
Corrected latitude Latitude Latitude
correctione.g. Corrected latitude AB 26.0347
(-0.0071) 26.028 m
26
Computation of Coordinates
  • General
  • Application

27
Calculate Coordinates
28
Adjusted Azimuths and Lengths
North (Y)
G
?
Lat. FG
L
F
L length of line FG
East (X)
Dep. FG
? azimuth of line FG
29
Calculating Azimuths and Lengths
L length of line JK
North (Y)
? azimuth of line JK
Dep. JK
East (X)
J
?
L
Lat. JK
K
30
Compute Adjusted Azimuths/Lengths
31
Least Squares Adjustment
  • Theory
  • Application
  • Issue

32
Understanding LS
  • Advantages of LS approach
  • Assumptions

33
Understanding LS
  • Generally make redundant measurements
  • Residual
  • Difference between observation and MPV
  • e.g. ?i MPV obsi
  • Premise of LS

34
Example
  • Measure distance five times
  • 100.04, 100.15, 99.97, 99.94, 100.06
  • Every observation has associated residual
  • M 100.04 ?1 ? ?1 M 100.04
  • M 100.15 ?2 ? ?2 M 100.15
  • M 99.97 ?3 ? ?3 M 99.97
  • M 99.94 ?4 ? ?4 M 99.94
  • M 100.06 ?5 ? ?5 M 100.06
  • LS selects M to minimize sum of squared residuals

35
Example cont.
  • Want to minimize sum of residuals
  • Recall from calculus
  • Function minimum occurs when derivative is zero
  • ?Take derivate with respect to M and equate to
    zero

36
LS Adjustment of Traverse
  • Components
  • Measure angles and distances
  • Derive MPV of point coordinates
  • Observation equations
  • Express observed measurements in terms of
    coordinates
  • Issue
  • Equations are non-linear
  • Normalized through Taylor expansion

37
Horizontal Traverse LS Adjustment
  • Minimal input

38
Estimating Horizontal Coordinates
  • Approach

39
Input File for LS Adjustment
40
Output File for LS Adjustment
  • Contents of output file
  • Summary of input data
  • Adjusted stations
  • Adjusted distances and residuals
  • Adjusted angles and residuals
  • Adjusted azimuths and residuals
  • Associated statistics
  • Quality of adjustment
  • Size of all residuals
  • Consider SD of unit weight

41
Output From LS Adjustment
42
Readings
  • Chapter 10 sections 10.11, 10.16 10.17
  • Chapter 15 sections 15.1 15.3
Write a Comment
User Comments (0)
About PowerShow.com