Title: Workshop on Reliable Engineering Computing
1Workshop on Reliable Engineering Computing
UNCERTAINTY IN THERMAL BASIN MODELING - AN
INTERVAL FINITE ELEMENT APPROACH
Sebastião C. A. Pereira -
Petrobras RD Center - Brazil (System
Analyst Department of Geology and Geophysics)
Ulisses T. Mello -
Watson Research Center -IBM/USA Rafi L.
Muhanna - Georgia Institute of
Technology/USA Nelson F.F. Ebecken
- Federal University of Rio de Janeiro/Brazil
September 17, 2004 - Savannah, Georgia, USA
2UNCERTAINTY IN THERMAL BASIN MODELING
Contents
- Overview
- Formulation
- Implementation
- Application
- Conclusion
3Overview
Uncertainty is the only certainty in oil
exploration (J. H. Fang, 1990)
- Generation p1
- Migration p2
- Reservoir p3
- Geometry p4
- Retention p5
- Syncronism p6
10
oil kitchen (kerogen)
(US)
4Overview
Heat Flux
f (lithosphere and crust stretching)
5Overview
(McKenzie, 1978)
IBV Initial Boundary Value (transient)
6Overview
Layer Sedimentation (can be Erosion) time scale
million of years
Well log
Mesh
1D Basin Modeling
7Thermal Calibration
vitrinite reflectance (laboratory) (maximum T
value along the time)
temperature (while drilling)
8Formulation
Diffusion Problem
Time dependence
9Thermal Diffusion
Thermal conductivity
Heat capacity
Convection coefficient
Galerkin discretization (implicit method)
10Porous media
11Transient Solution
deltt0.5 time step
(Ma) stime0 initial time
(Ma) ftime120.0 final time
(Ma) ntimefix((ftime-stime)/deltt) number of
times  kkcc/delttkk fsol0 for it1ntime
fnff(cc/deltt)fsol
compute effective column
kk,fnfeaplyc2(kk,fn,bcdof,bcval) apply
essential boundary fnfeaplyc2n(fn,bcdofn,bc
valn) apply natural boundary
fsolkk\fn
solve the interval system end
(mesh and properties are changing along the time)
12EBE with Elements Overlap
Element By Element
EBE static problems (Muhanna Mullen, 2001) EBE
overlap transient problems
13EBE with overlap
T1T5
14EBE com overlap
real
Interval diagonal matrix
15Implementation
Interval Linear System of Equations Library
- Preconditioning
- -Gauss Elimination
- -Gauss-Seidel
- Powell (optimization method), (Rao, 1989)
- Combinatorial
16Powell
achar X que minimize f(X) (Ax-b)0
17Combinatorial
(binary representation with 10 bits
7001010111100 genetic algorithm )
for i11024 end
18Implementation
(S. Deodato, 1994) (ConfInt and FzNum classes)
19How to use
//1 - S. NING and R. B. KEARFOTT (SIAM J.,
1997), A ex. 3.1 simMatDenseltConfIntgt
Aci(4,4) // ltdouble or FzNumgt
basArray1DNumericltConfIntgt bci(4)
basArray1DNumericltConfIntgt xci(4) Â
Aci00 ConfInt (4.,6.) Aci01
ConfInt (-1.,1.) . bci0 ConfInt
(-2.,4.) bci1 ConfInt (1.,8.) .
// enum GE0, PGE, GS, PGS,
POWELL, COMBINATORIAL simLinearSolverltConfIn
t, simMatDenseltConfIntgt gt lsi lsi.solveLSE (
POWELL, Aci, bci, xci ) Â cout ltlt"solution
ex. 3.1 \n" cout ltlt xci ltlt endl
20How to use
Library source code is free
fuzzy numbers interval loop gt hull
simLinearSolverltFzNum, simMatBandltFzNumgt gt
lsi lsi.solveLSE ( POWELL, Af, bf, xf )
21GEOFEM
GEOFEM GEological applications Of the Finite
Element Method (1D - Research Software)
22Application
Outline
- Few elements
- Increase number of elements
- Increase the interval width
- Real data.
23Test 1
Few elements and narrow intervals
Thermal Conductivity (Watts/m.K)
24Results at node 3
25Increasing the number of elements
Test 2
26Increasing the intervals width
Test 3
Thermal Conductivity (Watts/m.K)
27Real Data
Test 4
- EBE
- Combinatorial
- Monte Carlo
- Crisp
28Results
4783 m
29Conclusions
- PGE, PGS, Powell do not work for large problems
- Combinatorial limited to many parameters
- Monte Carlo a lot of experiments
- IFE (EBE) state of the art .
30Next Steps
- More properties as interval heat capacity,
density, - - ( 100 parameters)
- Others modeling fluid flow, chemical modeling,
- 2D, 3D (millions of elements)
31Basin Modeling Softwares x Uncertainty
- Petromod IES-Integrated Exploration Systems
(Germany) - MC (Latin cube)
- Themis IFP - Institute Français Du Pétrole
(France) - Experimental Design, Response Surface Model , MC
- SimBR Petrobras IBM (Brazil)
- Interval Arithmetic (in the future)
32SimBR 3D Basin Simulator
Santos 170000 km2 Recôncavo
11000 km2 SimBR 15600 km2
SimBR
SimBR 435000, 565000 Leste
7125000, 7245000 Norte UTM, MC 45,
Datum Aratu
33SimBR 3D Basin Simulator
34SimBR 3D Basin Simulator
S A LT
Movimentação do Sal
35SimBR 3D Basin Simulator
363D Thermal Modeling
R E C Ô N C A V O
7 days in a cluster with 64 nodes
37Aknowledgements
Dr. Rafi Muhanna
38 Thank you !