Workshop on Reliable Engineering Computing - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Workshop on Reliable Engineering Computing

Description:

Workshop on Reliable Engineering Computing – PowerPoint PPT presentation

Number of Views:63
Avg rating:3.0/5.0
Slides: 39
Provided by: UNR3
Category:

less

Transcript and Presenter's Notes

Title: Workshop on Reliable Engineering Computing


1
Workshop on Reliable Engineering Computing
UNCERTAINTY IN THERMAL BASIN MODELING - AN
INTERVAL FINITE ELEMENT APPROACH
Sebastião C. A. Pereira -
Petrobras RD Center - Brazil (System
Analyst Department of Geology and Geophysics)
Ulisses T. Mello -
Watson Research Center -IBM/USA Rafi L.
Muhanna - Georgia Institute of
Technology/USA Nelson F.F. Ebecken
- Federal University of Rio de Janeiro/Brazil
September 17, 2004 - Savannah, Georgia, USA
2
UNCERTAINTY IN THERMAL BASIN MODELING
Contents
  • Overview
  • Formulation
  • Implementation
  • Application
  • Conclusion

3
Overview
Uncertainty is the only certainty in oil
exploration (J. H. Fang, 1990)
  • Generation p1
  • Migration p2
  • Reservoir p3
  • Geometry p4
  • Retention p5
  • Syncronism p6

10
oil kitchen (kerogen)
(US)
4
Overview
Heat Flux
f (lithosphere and crust stretching)
5
Overview
(McKenzie, 1978)
IBV Initial Boundary Value (transient)
6
Overview
Layer Sedimentation (can be Erosion) time scale
million of years
Well log
Mesh
1D Basin Modeling
7
Thermal Calibration
vitrinite reflectance (laboratory) (maximum T
value along the time)
temperature (while drilling)
8
Formulation
Diffusion Problem
Time dependence
9
Thermal Diffusion
Thermal conductivity
Heat capacity
Convection coefficient
Galerkin discretization (implicit method)
10
Porous media
11
Transient Solution
deltt0.5 time step
(Ma) stime0 initial time
(Ma) ftime120.0 final time
(Ma) ntimefix((ftime-stime)/deltt) number of
times   kkcc/delttkk fsol0 for it1ntime
fnff(cc/deltt)fsol
compute effective column
kk,fnfeaplyc2(kk,fn,bcdof,bcval) apply
essential boundary fnfeaplyc2n(fn,bcdofn,bc
valn) apply natural boundary
fsolkk\fn
solve the interval system end
(mesh and properties are changing along the time)
12
EBE with Elements Overlap
Element By Element
EBE static problems (Muhanna Mullen, 2001) EBE
overlap transient problems
13
EBE with overlap
T1T5
14
EBE com overlap
real
Interval diagonal matrix
15
Implementation
Interval Linear System of Equations Library
  • Preconditioning
  • -Gauss Elimination
  • -Gauss-Seidel
  • Powell (optimization method), (Rao, 1989)
  • Combinatorial

16
Powell
achar X que minimize f(X) (Ax-b)0
17
Combinatorial
  • 10 interval numbers -gt

(binary representation with 10 bits
7001010111100 genetic algorithm )
for i11024 end
18
Implementation

(S. Deodato, 1994) (ConfInt and FzNum classes)
  • C (template, overload)

19
How to use
//1 - S. NING and R. B. KEARFOTT (SIAM J.,
1997), A ex. 3.1 simMatDenseltConfIntgt
Aci(4,4) // ltdouble or FzNumgt
basArray1DNumericltConfIntgt bci(4)
basArray1DNumericltConfIntgt xci(4)  
Aci00 ConfInt (4.,6.) Aci01
ConfInt (-1.,1.) . bci0 ConfInt
(-2.,4.) bci1 ConfInt (1.,8.) .
// enum GE0, PGE, GS, PGS,
POWELL, COMBINATORIAL simLinearSolverltConfIn
t, simMatDenseltConfIntgt gt lsi lsi.solveLSE (
POWELL, Aci, bci, xci )   cout ltlt"solution
ex. 3.1 \n" cout ltlt xci ltlt endl
20
How to use
Library source code is free
fuzzy numbers interval loop gt hull
simLinearSolverltFzNum, simMatBandltFzNumgt gt
lsi lsi.solveLSE ( POWELL, Af, bf, xf )
21
GEOFEM
GEOFEM GEological applications Of the Finite
Element Method (1D - Research Software)
22
Application
Outline
  • Few elements
  • Increase number of elements
  • Increase the interval width
  • Real data.

23
Test 1
Few elements and narrow intervals
Thermal Conductivity (Watts/m.K)
24
Results at node 3
25
Increasing the number of elements
Test 2
26
Increasing the intervals width
Test 3
Thermal Conductivity (Watts/m.K)
27
Real Data
Test 4
  • EBE
  • Combinatorial
  • Monte Carlo
  • Crisp

28
Results
4783 m
29
Conclusions
  • PGE, PGS, Powell do not work for large problems
  • Combinatorial limited to many parameters
  • Monte Carlo a lot of experiments
  • IFE (EBE) state of the art .

30
Next Steps
  • More properties as interval heat capacity,
    density,
  • - ( 100 parameters)
  • Others modeling fluid flow, chemical modeling,
  • 2D, 3D (millions of elements)

31
Basin Modeling Softwares x Uncertainty
  • Petromod IES-Integrated Exploration Systems
    (Germany)
  • MC (Latin cube)
  • Themis IFP - Institute Français Du Pétrole
    (France)
  • Experimental Design, Response Surface Model , MC
  • SimBR Petrobras IBM (Brazil)
  • Interval Arithmetic (in the future)

32
SimBR 3D Basin Simulator
Santos 170000 km2 Recôncavo
11000 km2 SimBR 15600 km2
SimBR
SimBR 435000, 565000 Leste
7125000, 7245000 Norte UTM, MC 45,
Datum Aratu
33
SimBR 3D Basin Simulator
34
SimBR 3D Basin Simulator
S A LT
Movimentação do Sal
35
SimBR 3D Basin Simulator
36
3D Thermal Modeling
R E C Ô N C A V O
7 days in a cluster with 64 nodes
37
Aknowledgements
Dr. Rafi Muhanna
38
Thank you !
Write a Comment
User Comments (0)
About PowerShow.com