Title: Large quantities of cheap, nanocrystalline metals
1Large quantities of cheap, nanocrystalline metals
- Why do we need such materials?
- Production methods.
- Theory.
- Role of interfaces.
2(No Transcript)
3an apple weighs 1 Newton
1 Pa
1 m
4Scifer, 5.5 GPa and ductile
Kobe Steel
5(No Transcript)
6(No Transcript)
7(No Transcript)
8Hanson and Yang
9Hanson and Yang
10(No Transcript)
11(No Transcript)
121 Denier weight in grams, of 9 km of fibre
50-10 Denier
Scifer is 9 Denier
13hexagonal close-packed
cubic close-packed
Christian, 1951
14Swallow and Bhadeshia, 1996
15Fe-2Si-3Mn-C wt
800
B
S
600
Temperature / K
400
M
S
200
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Carbon / wt
16Fe-2Si-3Mn-C wt
1.E08
1 year
1 month
Time / s
1.E04
1.E00
0
0.5
1
1.5
Carbon / wt
17Low transformation temperature Bainitic
hardenability Reasonable transformation
time Elimination of cementite Austenite grain
size control Avoidance of temper embrittlement
wt
18Isothermal
Austenitisation
Homogenisation
transformation
1200
C
o
2 days
1000
o
C
15 min
Temperature
125
o
C
-
325
o
C
Air
slow
hours
-
months
cooling
cooling
Quench
Time
19100
retained austenite
80
X-ray diffraction results
60
Percentage of phase
40
bainitic ferrite
20
0
200
250
300
325
o
Temperature/
C
20(No Transcript)
21a
g
a
g
g
50 nm
22g
g
a
a
a
20 nm
23Peet, Babu, Miller, Bhadeshia, 2004
24(No Transcript)
25Conclusions
Low temperature transformation 0.25 T/Tm Fine
microstructure 20-40 nm thick plates
Carbide-free Designed using theory alone Typical
mechanical properties
26(No Transcript)
27Faster Transformation
Cobalt (1.5 wt) and aluminium (1 wt) increase
the stability of ferrite relative to austenite
Refine austenite grain size
28200oC
250oC
300oC
29Mechanically Alloyed Oxide Dispersion
Strengthened Metals
30Atom probe image of MA957
31MA956
Chou Bhadeshia, 1994
32MA956
Chou Bhadeshia, 1994
33Mechanical Mixture
free energy of
mechanical
o
m
mixture
B
G
o
m
Gibbs free energy per mole
A
x
1-x
A
B
Concentration x of B
34free energy of
mechanical
o
m
mixture
B
G
Gibbs free energy per mole
o
m
A
?G
M
Gx
free energy
of solution
A
B
x
Composition
35(No Transcript)
36(No Transcript)
37For a random mixture, number of configurations
given by
38Boltzmann
39(No Transcript)
40Classical theory for entropy of mixing
41Solution-like behaviour when particles about 1000
atoms in size
Free energy of mixing due to configurational
entropy alone
42Enthalpy
43Surface per unit volume
Sv
Solution formation impossible!
Particle size
44coherent
coherent
incoherent
45Single barrier to solution formation when
components attract
Badmos and Bhadeshia
46Double barrier to solution formation when
components immiscible
Badmos and Bhadeshia
47o
m
B
o
m
A
free energy
of solution
A
B
Composition
48o
m
B
o
m
Paradox at concentration extremities vanishes in
the discrete model of concentration
A
Gibbs free energy per mole
A
B
Concentration x of B