Title: Distribution Small
1Distribution Small
n 35, e 17. All possible n-adic
representations of re mod n2 for r?(Z/nZ) . 1
0, 32 34, 33 18, 9 0, 6 13,
8 34, 4 29, 16 33, 17 30, 13 12,
11 2, 12 29, 23 17, 24 24, 22 4,
18 31, 19 13, 31 32, 27 17, 29 3,
26 11, 2 28, 3 27, 34 16. The
number of the second coefficient of re mod n2 for
0ltrltn. 0 2, 1 0, 2 1, 3 1, 4
1, 5 0, 6 0, 7 0, 8 0, 9
0, 10 0, 11 1, 12 1, 13 2, 14 0,
15 0, 16 1, 17 2, 18 1, 19 0, 20
0, 21 0, 22 0, 23 0, 24 1, 25 0,
26 0, 27 1, 28 1, 29 2, 30 1, 31
1, 32 1, 33 1, 34 2.
2General Conversion (G-RSA)
Key generation (e,n) RSA public key, d RSA
secret key, f one-way
function Encryption message m ?0,1,2,..,n-1,
random choose r?(Zn),
ciphertext (c1,c2) (re mod n, m f(r) mod n)
Decryption r c1d mod n, m c2/f(r) mod n.
- One-wayness of G-RSA
- ltgt one-wayness of the map re mod n to
f(r) mod n. - (2) Semantic Security of G-RSA
- ltgt to distinguish two distributions
- Rand (x,y) x?(Zn)x, y?Zn, OW
(xe,f(x))x?(Zn)x
3Number Theoretic Problems VI
Define one-way function fe,n,l(a) (a -
MSBl(a))e mod n, a - MSBl(a) means the most l
significant bits are zeroed.
Computational RSAMSBZ problem Let cme mod
n. Compute fe,n,l(m), for given RSA key (n,e),
ciphertext c.
Decisional RSAMSBZ problem Distinguish two
distributions Rand (x,y) x?(Zn)x, y?Zn,
RSAMSBZ (xe mod n, fe,n,l(x))x?(Zn)x
message m
RSA problem
m-MSB(m)
00000
ciphertext cme mod n
fe,n,l(m)
RSA-MSBZ problem
4Assumptions
C-RSAMSBZ assumption for any adversary
AC-RSAMSBZ we have
D-RSAMSBZ assumption for any adversary
AD-RSAMSBZ we have
5RSA-MSBZ Cryptosystem
Key generation (e,n) RSA public key, d RSA
secret key Encryption message m
?0,1,2,..,n-1, random choose r?(Zn),
ciphertext (c1,c2) (re mod n, m
fe,n,l(r)) Decryption r c1d mod n, m
c2/fe,n,l(r) mod n.
- One-wayness of RSA-MSBZ ltgt standard RSA
assumption (Perfect) - Semantic Security of RSA-MSBZ ltgt D-RSAMSBZ
assumption - Adversary to break D-RSAMSBZ problem can compute
- the least significant bits of nonce s.t. c
mod n.
These security results are similar with those of
S-Paillier cryptosystem.
6Proof for Perfect Oracle
- Input yre mod n, Output LSB(r)
- OC-RSAMSBZ(y) fe,n,l(r),
- w y2-e mod n, OC-RSA-MSBZ (w) fe,n,l(2-1r mod
n), - Return 0 if 2-e fe,n,l(r) fe,n,l(2-1r mod n)
mod n, else Return 1.
Note that MSBl((rn)/2)?MSBl(r)/2
If LSB(r) 0, the distribution ((r/2)e mod n,
((r-MSBl(r))/2)e mod n) is not uniform but in
RSAMSBZX. Thus we can detect several bits.
7Security Notation for Public-key Encryption
Schemes
Indistinguishability (IND) (semantical
security) an adversary can not learn any
information about the plaintext x underlying
a challenge ciphertext y. Non-malleability
(NM) given a challenge ciphertext y, an
adversary can not output a different cipher-
text y such that their plaintexts x, x are
meaningfully related (x x1).
Chosen Plaintext Attack (CPA) An adversary
can obtain ciphertexts of plaintexts of her
choice. Chosen Ciphertext Attack (CCA) An
adversary is allowed to access an decryption
oracle in any time.
The security is presented by the goals IND, NM
and attacks CPA,CCA
IND-CPA, IND-CCA, NM-CPA, NM-CCA.
8Relationship among the notions
Theorem (Bellare-Desai-Pointcheval-Rogaway 98)
NM-CPA
NM-CCA
IND-CCA
IND-CPA
A ? B if a cryptosystem ? meeting notation of
security A, then ? also meets
notation of security B.
Example (1) the PKCS1 version 1.5 is not
IND-CCA by Bleichenbacher attack. (2) Paillier
cryptosystem is IND-CPA but NM-CPA. (Let c
(1mn)yn mod n2 be a ciphertext, then c(1n) is
the ciphertext of m1.)
9History of IND-CCA public-key cryptosystems
- Theoretical general construction
- 91, Dolev-Dwork-Naor (non-malleability)
- 91, Rackoff-Simon (non-interactive
zero-knowledge) - Random oracle model
- 93, Bellare-Rogaway (RSA),
- 99, Fujisaki-Okamoto-Pointcheval (One-way
trapdoor) - Others
- Standard model
- 98, Cramer-Shoup (Decisional Diffie-Hellmann).
- (No RSA-type Schemes)
10An IND-CCA public-key cryptosystem using RSA
Key generation (K1) Let k be the bit-length
of n. (k1024, k0 k1 160) (K2) Let (e,n)
be a public-key and d be the secret key of the
RSA. (K3) g 0,1k ? 0,1k0, h
0,1k00,1k? 0,1 k1 Encryption a message m
is chosen from 0,1k0 (E1) generate random
r in 0,1k (E2) C re mod n, B m xor g(r)
, H h(m,r). (E3) The ciphertext is
(C,B,H). Decryption (D1) r Cd mod n, m B
xor g(r), (D2) check H h(m,r), if yes,
return m as a message, else reject.