Econometrics - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Econometrics

Description:

Consider a single equation GMM model: yt = ztd et. The model allows for random regressors, with instruments xt. ... is nonsingular. Serial Correlation ... – PowerPoint PPT presentation

Number of Views:102
Avg rating:3.0/5.0
Slides: 21
Provided by: kuanp
Category:

less

Transcript and Presenter's Notes

Title: Econometrics


1
Econometrics
  • Lecture Notes Hayashi, Chapter 6g
  • Serial Correlation in GMM

2
The Model
  • Consider a single equation GMM modelyt ztd
    et
  • The model allows for random regressors, with
    instruments xt.
  • The model allows for conditional
    heteroscedasticity and serial correlation.
  • Let gt xtet

3
Serial Correlation
  • gt, E(gt) 0
  • Serial correlation in et and hence in gt Gj
    E(gtgt-j), j0,?1,?2,
  • gt satisfies Gordins condition.
  • The long-run covariance matrix S ?j-?,,?Gj
    G0 ?j1,,?(Gj Gj) is nonsingular.

4
Serial Correlation
  • Given a positive definite weighting matrix W, GMM
    estimator dGMMW of d is consistent and
    asympototically normal.
  • With the consistent estimate of S, the asymptotic
    variance of dGMMW is heteroscedasticity and
    autocorrelation consistent (HAC).
  • The GMM estimator achieves the minimum variance
    when plimn??W S-1.

5
Serial Correlation
  • Given the consistent estimate of S, statistics
    for GMM model specification tests such as t, W,
    J, C, and LR remains valid and retain the same
    asymptotic distributions in the presence of
    serial correlation.
  • What we need is to be able consistently estimate
    the long-run variance matrix S.

6
Estimating S
  • Consistently estimate the individual
    autocovariancesGj (1/n) ?tj1,,n gtgt-j
    (j0,1,n-1)where gt xtet and et yt-ztdGMM
  • If the lag length q is known, then Gj 0 for
    jgtq. Therefore,S ?j-q,,qGj G0
    ?j1,,q(Gj Gj)

7
Estimating S
  • If q is not known, there are several approaches
    of kernel estimation availableS
    ?j-n1,,n-1k(j/q(n))Gj where k(.) is the
    kernel and q(n) is the bandwidth, which increases
    with the sample size.
  • Truncated Kernelk(x) 1 for x?1 0 for
    xgt1.This truncated kernel-based S is not
    guaranteed to be positive semidefinite in finite
    sample.

8
Estimating S
  • Bartlett Kernelk(x) 1-x for x?1 0 for
    xgt1.The Bartlett kernel-based S is called the
    Newey-West estimator. S can be made nonnegative
    definite in finite sample. For example, for
    q(n)3, we haveS G0 (2/3)(G1 G1)
    (1/3)(G2 G2)

9
Estimating S
  • Quadratic Spectral (QS) KernelSince k(x)?0 for
    xgt1 in the QS kernel, all the estimated
    autocovariances Gj (j0,1,,n-1) enter the
    calculation of S even if q(n)ltn-1.

10
Conditional Homoscedasticity
  • gt, gt xtet ? et
  • E(gtgt-j) ? E(etet-j)
  • Conditional HomoscedasticityWith serial
    correlation,E(etet-j)xt,xt-j) wj
    (j0,?1,?2,)E(gtgt-j) E(etet-jxtxt-j)
    wjE(xtxt-j) Gj

11
Conditional Homoscedasticity
  • Estimating Gj
  • Let et be the estimated et or residual wj is
    consistently estimated by (1/n)?tj1,netet-j.
  • E(xtxt-j) is consistently estimated by
    (1/n)?tj1,nxtxt-j.
  • Gj (1/n)?tj1,netet-j(1/n)?tj1,nxtxt-j
  • Estimating SS G0 ?j1,,q(Gj Gj)

12
Conditional Homoscedasticity
  • Let W is the autocovariance matrix of et

13
Conditional Homoscedasticity
  • If the lag length q is known, then Gj 0 for
    jgtq. Therefore,
  • If q is not known, for Bartlett kernel, let

14
Conditional Homoscedasticity
  • The single equation GMM under conditional
    homoscedasticity and serial correlation is the
    2SLS with serial correlation.
  • Let X xt, t1,2,,n. Z and y are the data
    matrices of the regressors and the dependent
    variable.

15
Conditional Homoscedasticity
  • d2SLS ZX(XWX)-1XZ-1ZX(XWX)-1Xy
  • The consistent estimate of the asymptotic
    variance-covariance matrix of d2SLS is
    ZX(XWX)-1XZ-1
  • If Z X, d2SLS ZZ-1Zy dOLS with the
    consistent estimate of variance-covariance matrix
    ZZ(ZWZ)-1ZZ-1

16
Conditional Homoscedasticity
  • Given that we have a consistent estimator of W,
    dGLS Z W-1Z-1Z W-1y
  • The consistency of GLS estimator is not
    guaranteed.
  • However, there is one important special case
    where GLS is consistent, and that is when the
    error is a finite-order autoregressive process.
  • GLS estimation for the AR(p) error process.

17
GLS for AR(1) Process
  • The Model
  • yt ztd et
  • et fet-1 ut
  • Autocovariances
  • g0 s2/(1- f2)
  • g1 f g0 s2 f/(1- f2)
  • gj f gj-1 s2 fj/(1- f2) for jgt1

18
GLS for AR(1) Process
  • Var(et) s2/(1- f2) V
  • V-1 CC

19
GLS for AR(1) Process
  • y Cy, Z CZ, e Ce u N(0,s2I)
  • y Z d u

20
GLS for AR(1) Process
  • GLS estimator dGLS OLS estimator for the
    transformed model y Z d u
  • dGLS (ZZ)-1Zy
  • Var(dGLS) s2 (ZZ)-1
  • EstVar(dGLS) s2 (ZZ)-1
  • s2 (y-ZdGLS)(y-ZdGLS)/(n-L)
Write a Comment
User Comments (0)
About PowerShow.com