Constraining the Low-Energy Cosmic Ray Spectrum - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Constraining the Low-Energy Cosmic Ray Spectrum

Description:

Nick Indriolo, Brian D. Fields, Benjamin J. McCall. University of Illinois at Urbana-Champaign ... 589, 217 5 - Spitzer, L., Jr., & Tomasko, M. G. 1968, ApJ, ... – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 17
Provided by: nic184
Category:

less

Transcript and Presenter's Notes

Title: Constraining the Low-Energy Cosmic Ray Spectrum


1
Constraining the Low-Energy Cosmic Ray Spectrum
  • Nick Indriolo, Brian D. Fields, Benjamin J. McCall

University of Illinois at Urbana-Champaign
2
Cosmic Ray Basics
  • Charged particles (e-, e, p, a, etc.)
    with high energy (103-1019 eV)
  • Galactic cosmic rays are primarily accelerated in
    supernovae remnants

3
Background
  • Cosmic rays have several impacts on the
    interstellar medium, all of which produce some
    observables
  • Ionization molecules
  • CR H2 ? H2 e- CR
  • H2 H2 ? H3 H
  • Spallation light element isotopes
  • p, a C, N, O ? 6Li, 7Li, 9Be, 10B, 11B
  • Nuclear excitation gamma rays
  • p, a C, O ? C, O ? ? (4.4, 6.13 MeV)

4
Motivations
  • Many astrochemical processes depend on ionization
  • Cosmic rays are the primary source of ionization
    in cold interstellar clouds
  • Low-energy cosmic rays (2-10 MeV) are the most
    efficient at ionization
  • The cosmic ray spectrum below 1 GeV cannot be
    directly measured at Earth

5
Example Cosmic Ray Spectra
1 - Nath, B. B., Biermann, P. L. 1994, MNRAS,
267, 447 2 - Hayakawa,
S., Nishimura, S., Takayanagi, T. 1961, PASJ,
13, 184 3 - Valle, G., Ferrini, F., Galli,
D., Shore, S. N. 2002, ApJ, 566, 252
4 - Kneller, J. P., Phillips, J. R., Walker, T.
P. 2003, ApJ, 589, 217 5 - Spitzer,
L., Jr., Tomasko, M. G. 1968, ApJ, 152, 971
6 - this study
6
Motivations
  • Recent results from H3 give an ionization rate
    of ?2410-16 s-1
  • Given a cosmic ray spectrum and cross section,
    the ionization rate can be calculated
    theoretically

Indriolo, N., Geballe, T. R., Oka, T., McCall,
B. J. 2007, ApJ, 671, 1736
7
Cross Sections
Bethe, H. 1933, Hdb. d Phys. (Berlin J.
Springer), 24, Pt. 1, 491 Read, S. M., Viola,
V. E. 1984, Atomic Data Nucl. Data, 31, 359
Meneguzzi, M. Reeves, H. 1975, AA, 40, 91
8
Leaky Box Model
9
Leaky Box Model
  • Broken power law in momentum
  • Produces an ionization rate of 110-17 s-1, much
    lower than the value inferred from H3
  • Try a spectrum with more flux at low energies by
    changing power law index below 200 MeV

10
Matching Observations
  • Float the spectral index to match inferred ?2
  • Choose a low energy cutoff (2 MeV)
  • We find a relationship of p-2.0 is required to
    produce an ionization rate of 3.610-16 s-1
  • This gives 8.610-17 s-1 assuming a 10 MeV cutoff
    (dense cloud)

Cravens, T. E., Dalgarno, A. 1978, ApJ, 219, 750
11
Effects on Light Elements
Lemoine, M., Vangioni-Flam, E., Cassé, M.
1998, ApJ, 499, 735
12
Effects on Gamma Rays
  • Interstellar gamma ray lines at 4.4 MeV 6.13
    MeV have not been observed
  • We predict a diffuse Galactic flux of 610-8
    cm-2 s-1 deg-2 for both lines
  • This is below the detection limit of current
    gamma ray telescopes such as Integral

13
Energy Requirements
  • We can also calculate the rate at which all of
    the particles in our spectrum lose energy
  • The result is 0.151051 ergs century-1
  • The standard supernova energy is 1051 ergs, and
    the standard supernova rate is 3 per century in
    the Galaxy, so this energy requirement is well
    within the Galactic budget

14
Conclusions
  • Leaky box propagated spectrum is unable to
    account for ionization rate
  • Possible to generate an ionization rate of about
    410-16 s-1 given the correct power law index
    (p-2) at low energies
  • This spectrum is in rough agreement with light
    element abundances, and is not inconsistent with
    gamma ray observations
  • Required input energy is available from supernovae

15
Future Work
  • Use more advanced cosmic ray models including
    re-acceleration effects
  • Consider variation of the cosmic ray spectrum in
    space and time
  • Continue observations to put better constraints
    on the ionization rate in various environments

16
Acknowledgments
Write a Comment
User Comments (0)
About PowerShow.com