Title: Lecture 11: Geometry of the Ellipse
1Lecture 11 Geometry of the Ellipse
- 25 February 2008
- GISC-3325
2Class Update
- Next exam 12 March 2008
- Labs 1-4 due today!
- Homework 2 due 3 March 2008
- Will have exams graded by next Monday
- Will post solutions to class web page
3Note on orthometric heights
- Orthometric height differences are provided by
leveling ONLY when there is parallelism between
equipotential surfaces. - Over short distances this may be the case.
- To account for non-parallelism we use
geopotential numbers in computations. - In general, geopotential surfaces are NOT
parallel in a N-S direction but are E-W
4Level Project
5Gravity values for points
6Helmert Orthometric Heights
7(No Transcript)
8(No Transcript)
9Geometry of the Ellipsoid
- Ellipsoid of revolution is formed by rotating a
meridian ellipse about its minor axis thereby
forming a 3-D solid, the ellipsoid. - Modern models are chosen on the basis of their
fit to the geoid. - Not always the case!
10Parameters
- a semi-major axis length
- b semi-minor axis length
- f flattening (a-b)/a
- e first eccentricity v((a2-b2)/a2)
- e second eccentricity v((a2-b2)/b2)
11THE ELLIPSOIDMATHEMATICAL MODEL OF THE EARTH
N
b
a
S
a Semi major axis b Semi minor axis f
a-b Flattening a
12THE GEOID AND TWO ELLIPSOIDS
CLARKE 1866
GRS80-WGS84
Earth Mass Center
Approximately 236 meters
GEOID
13 NAD 83 and ITRF / WGS 84
NAD 83
ITRF / WGS 84
Earth Mass Center
2.2 m (3-D) dX,dY,dZ
GEOID
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18Geodetic latitude Geocentric latitude Parametric
latitude
Unlike the sphere, the ellipsoid does not possess
a constant radius of curvature.
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23Radius of Curvature of the Prime Vertical
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)