Title: Basic Data Analysis: Descriptive Statistics
1Basic Data AnalysisDescriptive Statistics
2Disposition for afrapportering
- Om undersøgelsens tilblivelse
- Undersøgelsens hovedresultater
- Materialets sammensætning
- Elevernes faglige profiler
- Mhp. en bestemt videreuddannelse?
- Supplering inden studiestart?
- Hvad skal der ske efter sommerferien?
- Faglige interesset
- Opdelt på hum, samf og tek-nat hovedområder
- Kriterier for valg af studium
- Faglige dimensioner
- Sociale dimensioner
- Praktiske forhold
3Disposition for afrapportering(fortsat)
- Valg af studieby
- Plan for valg
- Opfattelsen af forskellige studiebyer
- Alt-i-alt-vurdering af studiebyer
- Om matematik-økonomi-uddannelsen
- Hørt om denne
- Kendskab til, hvor man kan få uddannelsen
- Overvejet at påbegynde mat-øk?
- Specielt om studiet ved AAU
- Kendskab
- KÃlde til kendskab
- PÃ¥begyndelse af studium?
- Sandsynligheden for at begynde efter
sommerferien.
4Types of Statistical Analyses Used in Marketing
Research
- Data summarization the process of describing a
data matrix by computing a small number of
measures that characterize the data set - Four functions of data summarization
- Summarizes the data
- Applies understandable conceptualizations
- Communicates underlying patterns
- Generalizes sample findings to the population
5Types of Statistical Analyses Used in Marketing
Research
6Types of Statistical Analyses Used in Marketing
Research
- Five Types of Statistical Analysis
- Descriptive analysis used to describe the data
set - Inferential analysis used to generate
conclusions about the populations
characteristics based on the sample data - Differences analysis used to compare the mean of
the responses of one group to that of another
group - Associative analysis determines the strength and
direction of relationships between two or more
variables - Predictive analysis allows one to make forecasts
for future events
7Types of Statistical Analyses Used in Marketing
Research
Hvis vi ændrer en bys image på en række
dimensioner, hvor meget stiger vurderingen af
byen så med?
Hvis vi ændrer en bys image på én dimension, hvor
meget stiger alt andet lige - vurderingen af
byen så med?
Hvilken betydning haropfattelsen af studiebyer
for valget heraf?
- Test af sammenhænge mellem
- undersøgelsesspørgsmål og kriterier
- undersøgelsesspørgsmål indbyrdes
Vurdering af repræsentativitet fx ved test mod en
kendt populationsfordeling på køn og alder
- Materialets sammensætning
- kriterier som køn og alder
- undersøgelsesspørgsmål
8Understanding Data Via Descriptive Analysis
- Two sets of descriptive measures
- Measures of central tendency used to report a
single piece of information that describes the
most typical response to a question - Measures of variability used to reveal the
typical difference between the values in a set of
values
9Understanding Data Via Descriptive Analysis
- Measures of Central Tendency
- Mode the value in a string of numbers that
occurs most often - Median the value whose occurrence lies in the
middle of a set of ordered values - Mean sometimes referred to as the arithmetic
mean the average value characterizing a set of
numbers
10Understanding Data Via Descriptive Analysis
- Measures of Variability
- Frequency distribution reveals the number
(percent) of occurrences of each number or set of
numbers - Range identifies the maximum and minimum values
in a set of numbers - Standard deviation indicates the degree of
variation in a way that can be translated into a
bell-shaped curve distribution
11Understanding Data Via Descriptive Analysis
12When to Use a Particular Statistic
13Hvornår bruges hvad?Eksempler fra casen
14Datamatricen i Studievalgsundersøgelsen
15Hvornår bruges hvad?Eksempler fra casen
16Hvornår bruges hvad?Eksempler fra casen
17Hvornår bruges hvad?Eksempler fra casen
18Hvornår bruges hvad?Eksempler fra casen
19Hvornår bruges hvad?Eksempler fra casen
20Generalizing a Samples Findings to Its
Population and Testing Hypotheses About Percents
and Means
21Statistics Versus Parameters
- Statistics values that are computed from
information provided by a sample - Parameters values that are computed from a
complete census which are considered to be
precise and valid measures of the population - Parameters represent what we wish to know about
a population. Statistics are used to estimate
population parameters.
22(No Transcript)
23The Concepts of Inference and Statistical
Inference
- Inference drawing a conclusion based on some
evidence - Statistical inference a set of procedures in
which the sample size and sample statistics are
used to make estimates of population parameters
24(No Transcript)
25Parameter Estimation
- Parameter estimation the process of using sample
information to compute an interval that describes
the range of values of a parameter such as the
population mean or population percentage is
likely to take on
26Parameter Estimation
- Parameter estimation involves three values
- Sample statistic (mean or percentage generated
from sample data) - Standard error (variance divided by sample size
formula for standard error of the mean and
another formula for standard error of the
percentage) - Confidence interval (gives us a range within
which a sample statistic will fall if we were to
repeat the study many times over
27Parameter Estimation
- Standard error while there are two formulas, one
for a percentage and the other for a mean, both
formulas have a measure of variability divided by
sample size. Given the sample size, the more
variability, the greater the standard error.
28Standard Error of the Mean
29Standard Error of the Percentage
30Parameter Estimation
- Confidence intervals the degree of accuracy
desired by the researcher and stipulated as a
level of confidence in the form of a percentage - Most commonly used level of confidence 95
corresponding to 1.96 standard errors
31Parameter Estimation
- What does this mean? It means that we can say
that if we did our study over 100 times, we can
determine a range within which the sample
statistic will fall 95 times out of 100 (95
level of confidence). This gives us confidence
that the real population value falls within this
range.
32Hypothesis Testing
- Hypothesis an expectation of what the population
parameter value is - Hypothesis testing a statistical procedure used
to accept or reject the hypothesis based on
sample information - Intuitive hypothesis testing when someone uses
something he or she has observed to see if it
agrees with or refutes his or her belief about
that topic
33Hypothesis Testing
- Statistical hypothesis testing
- Begin with a statement about what you believe
exists in the population - Draw a random sample and determine the sample
statistic - Compare the statistic to the hypothesized
parameter
34Hypothesis Testing
- Statistical hypothesis testing
- Decide whether the sample supports the original
hypothesis - If the sample does not support the hypothesis,
revise the hypothesis to be consistent with the
samples statistic
35What is a Statistical Hypothesis?
- A hypothesis is what someone expects (or
hypothesizes) the population percent or the
average to be. - If your hypothesis is correct, it will fall in
the confidence interval (known as supported). - If your hypothesis is incorrect, it will fall
outside the confidence interval (known as not
supported)
36How to Test Statistical Hypothesis
2.5
2.5
95
1.96
-1.96
37Types of Statistical Analyses Used in Marketing
Research
- Test af sammenhænge mellem
- undersøgelsesspørgsmål og kriterier
- undersøgelsesspørgsmål indbyrdes
38Sammenligning af to populationer i
Studievalgsundersøgelsen
- Sammenligninger ved hjælp af tabelanalyse
39(No Transcript)
40Sammenligning af to populationer i
Studievalgsundersøgelsen
41(No Transcript)
42(No Transcript)
43Sammenligning af to populationer i
Studievalgsundersøgelsen
44(No Transcript)
45Sammenligning af gennemsnittet for to spørgsmål i
Studievalgsundersøgelsen
46(No Transcript)
47Sammenligning af gennemsnittet for flere end to
populationer i Studievalgsundersøgelsen
48(No Transcript)
49(No Transcript)