Basic Data Analysis: Descriptive Statistics - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

Basic Data Analysis: Descriptive Statistics

Description:

Er der forskel mellem drenges og pigers planer om at l se videre p universitet el. ... forskellige skolers elever i deres planer for at l se videre p universitet el. ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 50
Provided by: Heat226
Category:

less

Transcript and Presenter's Notes

Title: Basic Data Analysis: Descriptive Statistics


1
Basic Data AnalysisDescriptive Statistics
2
Disposition for afrapportering
  • Om undersøgelsens tilblivelse
  • Undersøgelsens hovedresultater
  • Materialets sammensætning
  • Elevernes faglige profiler
  • Mhp. en bestemt videreuddannelse?
  • Supplering inden studiestart?
  • Hvad skal der ske efter sommerferien?
  • Faglige interesset
  • Opdelt pÃ¥ hum, samf og tek-nat hovedomrÃ¥der
  • Kriterier for valg af studium
  • Faglige dimensioner
  • Sociale dimensioner
  • Praktiske forhold

3
Disposition for afrapportering(fortsat)
  • Valg af studieby
  • Plan for valg
  • Opfattelsen af forskellige studiebyer
  • Alt-i-alt-vurdering af studiebyer
  • Om matematik-økonomi-uddannelsen
  • Hørt om denne
  • Kendskab til, hvor man kan fÃ¥ uddannelsen
  • Overvejet at pÃ¥begynde mat-øk?
  • Specielt om studiet ved AAU
  • Kendskab
  • Kílde til kendskab
  • PÃ¥begyndelse af studium?
  • Sandsynligheden for at begynde efter
    sommerferien.

4
Types of Statistical Analyses Used in Marketing
Research
  • Data summarization the process of describing a
    data matrix by computing a small number of
    measures that characterize the data set
  • Four functions of data summarization
  • Summarizes the data
  • Applies understandable conceptualizations
  • Communicates underlying patterns
  • Generalizes sample findings to the population

5
Types of Statistical Analyses Used in Marketing
Research
6
Types of Statistical Analyses Used in Marketing
Research
  • Five Types of Statistical Analysis
  • Descriptive analysis used to describe the data
    set
  • Inferential analysis used to generate
    conclusions about the populations
    characteristics based on the sample data
  • Differences analysis used to compare the mean of
    the responses of one group to that of another
    group
  • Associative analysis determines the strength and
    direction of relationships between two or more
    variables
  • Predictive analysis allows one to make forecasts
    for future events

7
Types of Statistical Analyses Used in Marketing
Research
Hvis vi ændrer en bys image på en række
dimensioner, hvor meget stiger vurderingen af
byen så med?
Hvis vi ændrer en bys image på én dimension, hvor
meget stiger alt andet lige - vurderingen af
byen så med?
Hvilken betydning haropfattelsen af studiebyer
for valget heraf?
  • Test af sammenhænge mellem
  • undersøgelsesspørgsmÃ¥l og kriterier
  • undersøgelsesspørgsmÃ¥l indbyrdes

Vurdering af repræsentativitet fx ved test mod en
kendt populationsfordeling på køn og alder
  • Materialets sammensætning
  • kriterier som køn og alder
  • undersøgelsesspørgsmÃ¥l

8
Understanding Data Via Descriptive Analysis
  • Two sets of descriptive measures
  • Measures of central tendency used to report a
    single piece of information that describes the
    most typical response to a question
  • Measures of variability used to reveal the
    typical difference between the values in a set of
    values

9
Understanding Data Via Descriptive Analysis
  • Measures of Central Tendency
  • Mode the value in a string of numbers that
    occurs most often
  • Median the value whose occurrence lies in the
    middle of a set of ordered values
  • Mean sometimes referred to as the arithmetic
    mean the average value characterizing a set of
    numbers

10
Understanding Data Via Descriptive Analysis
  • Measures of Variability
  • Frequency distribution reveals the number
    (percent) of occurrences of each number or set of
    numbers
  • Range identifies the maximum and minimum values
    in a set of numbers
  • Standard deviation indicates the degree of
    variation in a way that can be translated into a
    bell-shaped curve distribution

11
Understanding Data Via Descriptive Analysis
  • Measures of Variability

12
When to Use a Particular Statistic
13
Hvornår bruges hvad?Eksempler fra casen
14
Datamatricen i Studievalgsundersøgelsen
15
Hvornår bruges hvad?Eksempler fra casen
16
Hvornår bruges hvad?Eksempler fra casen
17
Hvornår bruges hvad?Eksempler fra casen
18
Hvornår bruges hvad?Eksempler fra casen
19
Hvornår bruges hvad?Eksempler fra casen
20
Generalizing a Samples Findings to Its
Population and Testing Hypotheses About Percents
and Means
21
Statistics Versus Parameters
  • Statistics values that are computed from
    information provided by a sample
  • Parameters values that are computed from a
    complete census which are considered to be
    precise and valid measures of the population
  • Parameters represent what we wish to know about
    a population. Statistics are used to estimate
    population parameters.

22
(No Transcript)
23
The Concepts of Inference and Statistical
Inference
  • Inference drawing a conclusion based on some
    evidence
  • Statistical inference a set of procedures in
    which the sample size and sample statistics are
    used to make estimates of population parameters

24
(No Transcript)
25
Parameter Estimation
  • Parameter estimation the process of using sample
    information to compute an interval that describes
    the range of values of a parameter such as the
    population mean or population percentage is
    likely to take on

26
Parameter Estimation
  • Parameter estimation involves three values
  • Sample statistic (mean or percentage generated
    from sample data)
  • Standard error (variance divided by sample size
    formula for standard error of the mean and
    another formula for standard error of the
    percentage)
  • Confidence interval (gives us a range within
    which a sample statistic will fall if we were to
    repeat the study many times over

27
Parameter Estimation
  • Standard error while there are two formulas, one
    for a percentage and the other for a mean, both
    formulas have a measure of variability divided by
    sample size. Given the sample size, the more
    variability, the greater the standard error.

28
Standard Error of the Mean
29
Standard Error of the Percentage
30
Parameter Estimation
  • Confidence intervals the degree of accuracy
    desired by the researcher and stipulated as a
    level of confidence in the form of a percentage
  • Most commonly used level of confidence 95
    corresponding to 1.96 standard errors

31
Parameter Estimation
  • What does this mean? It means that we can say
    that if we did our study over 100 times, we can
    determine a range within which the sample
    statistic will fall 95 times out of 100 (95
    level of confidence). This gives us confidence
    that the real population value falls within this
    range.

32
Hypothesis Testing
  • Hypothesis an expectation of what the population
    parameter value is
  • Hypothesis testing a statistical procedure used
    to accept or reject the hypothesis based on
    sample information
  • Intuitive hypothesis testing when someone uses
    something he or she has observed to see if it
    agrees with or refutes his or her belief about
    that topic

33
Hypothesis Testing
  • Statistical hypothesis testing
  • Begin with a statement about what you believe
    exists in the population
  • Draw a random sample and determine the sample
    statistic
  • Compare the statistic to the hypothesized
    parameter

34
Hypothesis Testing
  • Statistical hypothesis testing
  • Decide whether the sample supports the original
    hypothesis
  • If the sample does not support the hypothesis,
    revise the hypothesis to be consistent with the
    samples statistic

35
What is a Statistical Hypothesis?
  • A hypothesis is what someone expects (or
    hypothesizes) the population percent or the
    average to be.
  • If your hypothesis is correct, it will fall in
    the confidence interval (known as supported).
  • If your hypothesis is incorrect, it will fall
    outside the confidence interval (known as not
    supported)

36
How to Test Statistical Hypothesis
2.5
2.5
95
1.96
-1.96
37
Types of Statistical Analyses Used in Marketing
Research
  • Test af sammenhænge mellem
  • undersøgelsesspørgsmÃ¥l og kriterier
  • undersøgelsesspørgsmÃ¥l indbyrdes

38
Sammenligning af to populationer i
Studievalgsundersøgelsen
  • Sammenligninger ved hjælp af tabelanalyse

39
(No Transcript)
40
Sammenligning af to populationer i
Studievalgsundersøgelsen
41
(No Transcript)
42
(No Transcript)
43
Sammenligning af to populationer i
Studievalgsundersøgelsen
44
(No Transcript)
45
Sammenligning af gennemsnittet for to spørgsmål i
Studievalgsundersøgelsen
46
(No Transcript)
47
Sammenligning af gennemsnittet for flere end to
populationer i Studievalgsundersøgelsen
48
(No Transcript)
49
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com