Genetic Approximate Matching of Attributed Relational Graphs - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Genetic Approximate Matching of Attributed Relational Graphs

Description:

Thomas B recke , Marcin Detyniecki , Stefano Berretti and Alberto Del Bimbo . Universit Pierre et Marie Curie - Paris6 UMR 7606, DAPA, LIP6, Paris, France ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 22
Provided by: carbonVide
Category:

less

Transcript and Presenter's Notes

Title: Genetic Approximate Matching of Attributed Relational Graphs


1
Genetic Approximate Matching of Attributed
Relational Graphs
  • Thomas Bärecke¹, Marcin Detyniecki¹, Stefano
    Berretti² and Alberto Del Bimbo²

¹ Université Pierre et Marie Curie - Paris6 UMR
7606, DAPA, LIP6, Paris, France ² Università
degli Studi di Firenze, Dipartimento di Sistemi e
Informatica, Florence, Italy
2
Motivation 1/2
  • Frontal
  • Neutral expression

3
Motivation 2/2
4
Outline
  • EC Subgraph Isomorphism
  • Genetic Approach
  • Encoding
  • Crossover
  • Local search
  • Combination with tree search
  • Results
  • Conclusions and Future Work

5
EC (Sub-)Graph Isomorphism
  • No known optimal and efficient algorithm
  • Genetic algorithms
  • Parallel exploration of large non-continuous
    search spaces
  • No perfect exploitation
  • Adaptive stop criterion
  • Solution quality
  • Elapsed time
  • Good solutions in reasonable time
  • Optimal algorithms
  • Exponential complexity
  • Max. 15 vertices

6
GA - Encoding
1
1
2
4
2
3
4
3
7
GA - Crossover
1
1
4
2
4
2
3
3
  • Fitness change depends on all other elementary
    mappings
  • Strict position-based crossover (PBX)

8
Strict position-based crossover
  • Create position list and shuffle it
  • Uniformly select crossover points
  • Create children
  • In case of collision place in alternative place
  • Fill in missing values

1 3 4 2 5
4 1 2 3 5
1 2 3 4 5
1 4 2 3 5
2 3 4 1 5
3 1 5 2 4
2 1 5 4 3
4 2 5 3 1
X x x
4 1 3 5
1 3 2 5
9
GA Local Search
  • Neighborhood N
  • Fitness evaluation of the neighborhood

10
GA other parameters
11
Combining GA with A




GA
12
Outline
  • EC Subgraph Isomorphism
  • Genetic Approach
  • Results
  • Evolution
  • Precision
  • Run time
  • Combined method
  • Conclusions and Future Work

13
Evolution Process
False Mappings
Fitness
14
Diversity
15
Precision Crossover 1/2
PBX
PMX
16
Precision Crossover 2/2
PBX
UPMX
17
Results - Runtime
Graph size
Noise (Size 50)
18
Combined results
19
Conclusions
  • Permutation based Genetic Algorithm
  • Robust for Subgraph Matching
  • Crossover operator
  • Local search
  • Solution candidate at any time
  • Combination of exact and approximate methods

20
Future Work
  • Real world data!
  • Allow more graph edit operations
  • Better local improvement heuristic
  • Fewer and optimal parameters
  • Comparison with cycle crossover

21
Thanks for your attention
Write a Comment
User Comments (0)
About PowerShow.com