Number Theory and Advanced Cryptography 10' Modular Exponentiation - PowerPoint PPT Presentation

1 / 45
About This Presentation
Title:

Number Theory and Advanced Cryptography 10' Modular Exponentiation

Description:

Blakley's method. Montgomery's method. 26. Standard Multiplication ... Blakley's Method (1) ... Blakley's Method (3) 37. Montgomery's Method (1) 38 ... – PowerPoint PPT presentation

Number of Views:415
Avg rating:3.0/5.0
Slides: 46
Provided by: can73
Category:

less

Transcript and Presenter's Notes

Title: Number Theory and Advanced Cryptography 10' Modular Exponentiation


1
Number Theory and Advanced Cryptography 10.
Modular Exponentiation
Part I Introduction to Number Theory Part II
Advanced Cryptography
  • Chih-Hung Wang
  • Feb. 2008

2
Reference
  • High-Speed RSA Implementation
  • Cetin Kaya Koc
  • RSA Lab. RSA Data Security, Inc.
  • Nov. 1994

3
Modular Exponentiation
4
Binary Method (1)
5
Binary Method (2)
  • Example

e 250 (11111010)
6
m-ary Method (1)
7
m-ary Method (2)
8
m-ary Method (3)
  • Quaternary Example

9
Adaptive m-ary Method (1)
  • Reducing preprocessing multiplications

6 multiplications ? m-array needs 14
multiplications
10
Adaptive m-ary Method (2)
  • Sliding window techniques

dmax(L(Fi))
11
Constant Length Nonzero Windows (1)
12
Constant Length Nonzero Windows (2)
13
Variable Length Nonzero Windows (1)
14
Variable Length Nonzero Windows (2)
15
Addition Chains (1)
16
Addition Chains (2)
17
Recoding Methods (1)
18
Recoding Methods (2)
19
Recoding Methods (3)
20
Booth Algorithm (1)
Worst case
21
Booth Algorithm (2)
  • Modified schemes

22
The Canonical Recoding Algorithm (1)
23
The Canonical Recoding Algorithm (2)
24
Recoding and Cryptography
25
Modular Multiplication
  • Multiply and then Reduce
  • Blakleys method
  • Montgomerys method

26
Standard Multiplication Algorithm (1)
27
Standard Multiplication Algorithm (2)
28
Standard Multiplication Algorithm (3)
29
Standard Multiplication Algorithm (4)
30
Computation of the Remainder (1)
  • Restoring Division Algorithm
  • Division is the most complex of the four basic
    arithmetic operations.

31
Computation of the Remainder (2)
  • Example 3019 mod 53
  • 3019(101111001011)2 53(110101)2

32
Computation of the Remainder (3)
  • Nonrestoring Division Algorithm

33
Computation of the Remainder (4)
  • Example 513019 mod 53

34
Blakleys Method (1)
  • G. R. Blakley. A computer algorithm for the
    product AB modulo M. IEEE Transactions on
    Computers, 32(5)497500, May 1983.

35
Blakleys Method (2)
36
Blakleys Method (3)
37
Montgomerys Method (1)
38
Montgomerys Method (2)
39
Montgomerys Method (3)
40
Montgomerys Method (4)
41
Montgomerys Method (5)
42
Montgomery Exponentiation (1)
  • The exponentiation algorithm uses the binary
    method

43
Montgomery Exponentiation (2)
  • Example x710 mod 13

44
Montgomery Exponentiation (3)
45
Montgomery Exponentiation (4)
Write a Comment
User Comments (0)
About PowerShow.com