Potential Energy - PowerPoint PPT Presentation

1 / 47
About This Presentation
Title:

Potential Energy

Description:

Potential energy is the energy associated with the configuration of a system of ... by the gravitational force as it falls from some height yb to a lower height ya ... – PowerPoint PPT presentation

Number of Views:128
Avg rating:3.0/5.0
Slides: 48
Provided by: maril225
Category:

less

Transcript and Presenter's Notes

Title: Potential Energy


1
Chapter 7
  • Potential Energy

2
7.1 Potential Energy
  • Potential energy is the energy associated with
    the configuration of a system of two or more
    interacting objects or particles that exert
    forces on each other
  • The forces are internal to the system

3
Types of Potential Energy
  • There are many forms of potential energy,
    including
  • Gravitational
  • Electromagnetic
  • Chemical
  • Nuclear
  • One form of energy in a system can be converted
    into another

4
System Example
  • This system consists of the Earth and a book
  • Do work on the system by lifting the book through
    Dy
  • The work done by an external force on the book is
    mgyb - mgya

Fig 7.1
5
Potential Energy
  • Similar as the work-kinetic energy theorem, the
    work equals to the difference between the final
    and initial values of some quantity of the
    system.
  • The quantity is called potential energy of the
    system.
  • Through the work, energy is transferred into the
    system in a form different from kinetic energy.
  • The transferred energy is stored in the system.
  • The quantity Ugmgy is called the gravitational
    potential energy of the book-Earth system.

6
Gravitational Potential Energy
  • Gravitational Potential Energy is associated with
    an object at a given distance above Earths
    surface
  • Assume the object is in equilibrium and moving at
    constant velocity
  • The work done on the object is done by
    and the upward displacement is

7
Gravitational Potential Energy, cont
  • The quantity mgy is identified as the
    gravitational potential energy, Ug
  • Ug mgy
  • Units are joules (J)

8
Gravitational Potential Energy, final
  • The gravitational potential energy depends only
    on the vertical height of the object above
    Earths surface
  • A reference configuration of the system must be
    chosen so that the gravitational potential energy
    at the reference configuration is set equal to
    zero
  • The choice is arbitrary because the difference in
    potential energy is independent of the choice of
    reference configuration

9
7.2 Conservation of Mechanical Energy for
isolated systems
  • The mechanical energy of a system is the
    algebraic sum of the kinetic and potential
    energies in the system
  • Emech K Ug
  • The statement of Conservation of Mechanical
    Energy for an isolated system is Kf Ugf Ki
    Ugi
  • An isolated system is one for which there are no
    energy transfers across the boundary

10
Conservation of Mechanical Energy, example
  • Look at the work done on the book by the
    gravitational force as it falls from some height
    yb to a lower height ya
  • Won book DKbook
  • Also, W mgyb mgya
  • So, DK -Dug
  • Kf Ugf Ki Ugi
  • The isolated system is the book and the Earth.

Fig 7.2
11
(No Transcript)
12
Fig 7.4
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
Fig 7.5
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
Elastic Potential Energy
  • Elastic Potential Energy is associated with a
    spring, Us 1/2 k x2
  • The work done by an external applied force on a
    spring-block system is
  • W 1/2 kxf2 1/2 kxi2
  • The work is equal to the difference between the
    initial and final values of an expression related
    to the configuration of the system

23
Elastic Potential Energy, cont
  • This expression is the elastic potential energy
    Us 1/2 kx2
  • The elastic potential energy can be thought of as
    the energy stored in the deformed spring
  • The stored potential energy can be converted into
    kinetic energy

Fig 7.6
24
Elastic Potential Energy, final
  • The elastic potential energy stored in a spring
    is zero whenever the spring is not deformed (U
    0 when x 0)
  • The energy is stored in the spring only when the
    spring is stretched or compressed
  • The elastic potential energy is a maximum when
    the spring has reached its maximum extension or
    compression
  • The elastic potential energy is always positive
  • x2 will always be positive

25
Conservation of Energy for isolated systems
  • Including all the types of energy discussed so
    far, Conservation of Energy can be expressed as
  • DK DU DEint DE system 0 or
  • K U E int constant
  • K would include all objects
  • U would be all types of potential energy
  • The internal energy is the energy stored in a
    system besides the kinetic and potential
    energies.

26
7.3 Conservative Forces
  • A conservative force is a force between members
    of a system that causes no transformation of
    mechanical energy to internal energy within the
    system
  • The work done by a conservative force on a
    particle moving between any two points is
    independent of the path taken by the particle
  • The work done by a conservative force on a
    particle moving through any closed path is zero

27
Nonconservative Forces
  • A nonconservative force does not satisfy the
    conditions of conservative forces
  • Nonconservative forces acting in a system cause a
    change in the mechanical energy of the system

28
Nonconservative Force, Example
  • Friction is an example of a nonconservative force
  • The work done depends on the path
  • The red path will take more work than the blue
    path

Fig 7.7
29
Mechanical Energy and Nonconservative Forces
  • In general, if friction is acting in a system
  • DEmech DK DU -kd
  • DU is the change in all forms of potential energy
  • If friction is zero, this equation becomes the
    same as Conservation of Mechanical Energy

30
(No Transcript)
31
Fig 7.8
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
Nonconservative Forces, Example 1 (Slide)
  • DEmech DK DU
  • DEmech (Kf Ki)
  • (Uf Ui)
  • DEmech (Kf Uf)
  • (Ki Ui)
  • DEmech 1/2 mvf2 mgh -kd

37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
Nonconservative Forces, Example 2 (Spring-Mass)
  • Without friction, the energy continues to be
    transformed between kinetic and elastic potential
    energies and the total energy remains the same
  • If friction is present, the energy decreases
  • DEmech -kd

42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com