Advanced Tracking: KLT Tracker - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Advanced Tracking: KLT Tracker

Description:

Calculate Covar(gx,gy) Calculate Eigen-vectors and values (l1,l2) ... Only have to define size and TH. gx. gy. gx. gy. gx. gy. gx. gy. KLT-tracker: Problem #2 ... – PowerPoint PPT presentation

Number of Views:433
Avg rating:3.0/5.0
Slides: 13
Provided by: TBM8
Category:

less

Transcript and Presenter's Notes

Title: Advanced Tracking: KLT Tracker


1
Advanced Tracking KLT Tracker
  • Introduction
  • Pixel-based tracking
  • KLT tracker
  • What to remember

2
Advanced tracking
  • Simple tracking blob, feature vector, predictor
    (Kalman Filter)
  • Advanced tracking cluttered background and
    multiple obj.
  • Two types of advanced tracking algorithms
  • Pixel-based (low-level)
  • (Geometric) model-based (high-level)
    Condensation ASM

3
Pixel-based tracking
  • Complex objects and background gt
  • hard to extract a model of the object
  • Solution model texture template of object
  • Pixel-based tracking Template matching
  • Three problems associated with TM
  • How to define a good template
  • TM is variant to geometric transformations
  • The template update paradox

4
TM and geometric transforms (2)
  • Pixel relationship y Dx d

Transformation
Equation
Invariant

Translation
D I
-
Rotation
Scaling
-
Affine
-
5
The template update paradox (3)
  • Change in illumination non-affine motion
  • The template should adapt to these changes
  • Model template template(t-1)
  • Problem End up tracking the background
  • Paradox Adaptive update without tracking the
    background

6
KLT-tracker
  • Kanada-Lucas-Tomasi (CMU) (1990-1994)
  • KLT uses TM but handles all 3 problems
  • Other good algorithms, but
  • Survived 10 years
  • Good SW available, e.g. demo in OpenCV
  • Describe KLT wrt the three problems
  • Based on the paper (CVPR94)

7
KLT-tracker Problem 1
  • Define a template
  • Measure the amount of texture in a window
  • Calculate gradients (edges) for each pixel
    (gx,gy)

8
KLT-tracker Problem 1
  • Calculate Covar(gx,gy)
  • Calculate Eigen-vectors and values (l1,l2)
  • If both eigen-values are small gt no texture
  • Accept template if min(l1,l2) gt TH
  • Automatic method. Only have to define size and TH

9
KLT-tracker Problem 2
  • 2 Sensitive to geometric transformations
  • Assumptions
  • A pixel intensity is constant over time
  • Only affine motion is present
  • Together we have
  • J(Dxdx) I(x) ltgt J(Axd) I(x), where A
    ID
  • D 0 gt normal template matching
  • KLT invariant to affine transformation (P2)
  • Similarity measure SSD
  • Same as for standard TM except 6 vs. 2 par.

10
KLT-tracker Problem 2
  • SSD gt e SSW J(Axd) - I(x) 2
  • Match min arg e
  • 6 parameters gt brute force no good!
  • Instead
  • Partial derivatives equal to zero
  • Taylor expansion to simplify matters gt
  • Tz a (6x6) z D11, D12, D21,
    D22,dx,dyT
  • Newton-Raphson iteration

A,d
11
KLT-tracker Problem 3
  • High frame-rate during tracking gt
  • D 0 and zd e (2x2) Newton-Raphson
  • Use the template from last frame as model gt
  • adaptive (good) tracking
  • Monitoring the templates. Stop tracking
  • when low similarity (e gt TH)

t 0
t
t1
time
Match ( d )
Model
Monitoring (affine A,d )
12
What to remember TM KLT
  • 3 problems associated with template matching
  • How to define a template
  • Variant to geometric transformations
  • The template updating paradox
  • KLT
  • 1 Automatic method based on edges
  • 2 Apply affine motion model
  • 3 Adaptive update AND evaluation (monitor)
  • A general purpose low-level tracker (few
    parameters)
  • No high-level reasoning, e.g. during occlusion
  • Demo
Write a Comment
User Comments (0)
About PowerShow.com