Title: B' Overview of Orestes Code:
1(No Transcript)
2(No Transcript)
3(No Transcript)
4(No Transcript)
5B. Overview of Orestes Code Laser physics
simulation model.
Physics
e-beam ionization and excitation from Boltzmann
analysis plasma 1D axially resolved,
separate electron and gas temperatures kinetics
24 species, 122 reactions, Includes KrF
vibrational structure lasing and ASE 3D,
discrete ordinates, time dependent, ASE gain
narrowing
Objectives
system scaling, pulse shaping, improve efficiency
Accomplishments
validated code design analysis for Electra
6Multi-species plasma chemistry for KrF kinetics
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16Small Signal Gain Measurement(February 26, 2003)
L 95 cm
0.91 dia.
Tw.64
Tw.64
I0
305i Ii
PD1
2 in. Cal
L 20 cm
L 20 cm
Experimental Results (2in. Cal) Input 3.5
mV Output 940 mV Input 1.08 mV Output 850
mV Lower Input Output 640 mV No Input Output
640 mV
17Small Signal Gain Results
Iout/Iine(gl)
Assumption 4 The intensity stays below the
saturation intensity!! Case 1 4.7/cm Iin 47
kW/cm2 Iout 4.1 MW/cm2 Case 2 5.5 /cm Iin
16 kW/cm2 Iout 3.1 MW/cm2 If saturation
intensity 1.5 MW/cm2 then Assumption 4 invalid
Full Rigrod Analysis needed Helpful Comparison
to Garpun Differences 100 cm E-beam Garpun used
95 cm E-beam Electra With Garpun graph Electra
small signal gain greater than 7/cm
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22Time Response of Oscillator at Various Fluorine
Concentrations
0.25F2, 39.75 Kr, 60 Ar
0.7F2 39.3 Kr 60 Ar
0.1F2, 39.9 Kr, 60 Ar
23(No Transcript)