Title: Prsentation PowerPoint
1NANCY 09-06-05
D. Calogine K .Chetehouna E. Lamorlette J.
Margerit S. Ramezani N. Rimbert O. Séro-Guillaume
Modèles de Combustion en milieux
poreux Caractérisation de la végétation Modèles
de propagation à grande échelle Modélisation de
la lutte par largage
2INTRODUCTION
3The Scales
Scale of Combustion Flames above
vegetation Convection Radiation
The wood is a porous medium with several phases
and several components
The vegetation is a porous medium with two phases
Scale of chemical reactions Pyrolysis Drying
Scale of Combustion Convection Radiation
4The modeling at different scales
10 lt Re lt 104
Mesoscopic scale
Porous medium combustion model
Macroscopic scale
107lt Re
Gigascopicc scale
Propagation model
5VEGETATION MODEL
6Vegetation Model
CIRAD Software A.M.A.P.
Dedicated to virtual Agronomy
Vegetation has been considered as fractal
Not well suited for computational purposes
7Vegetation Model
Construction by Iterated Functions Systems I.F.S.
Barnsley, Hutchinson
Deterministic
Probabilistic
pi probabilites
Probability
is pi
8Vegetation Model
Calogine et al. 1998
Example
9Vegetation Model
Other Types of Vegetals
Model 3 Order 5
Model 1 Order 7
Model 2 Order 4
10Vegetation Model
11Vegetation Model
Automatic generation of the mesh
12Vegetation Model
Automatic generation of the mesh
h10m
7 millions cells
13Vegetation Model
z
y
x
écoulement
14Vegetation Model
15FIGHTING MODEL
16Dropping model
Continuous Eulerian model
- New equation for Interfacial area density
- New closure for Interfacial velocity
Averaging procedure
17Dropping model
Stochastic approach
Figure 1 fitting of the drop spray p.d.f. VSL
0.041 m/s VSG 35 m/s. From left to right the
p.d.f. are log-stable p.d.f., Upper-limit Evans
p.d.f. , log-normal p.d.f. and log-Weibull p.d.f.
Log-Levy stable distributions are better
distributions than the usual ones
18Dropping model
Transport Equation for the interfacial density
- It can be shown that
- Where Sc is a source related to curvature
- Se is a surface stretching term
- Sfc is a term related to fragmentation and
coalescence
19Dropping model
Two Fluids Model
20Dropping Model
4.8 million cells used for the atomisation stage
A 850,000 cells grid used in the dispersion stage
21Dropping Model
velocity field around the cloud of retardant in
the airplane frame of reference t 0.5 s
isosurface a 0.5 (2 gum mass percentage)
22Dropping Model
The results of part I are initial conditions for
part II
23Dropping model
Dropping Simulations
24A 3D DETAILED MODELOFCOMBUSTION
25Homogenized Medium
First Step Extension of the equations
Write all equations at Microscopic scale using
distribution theory, so that boundary conditions
are included in the equations.
Albini Model at microscopic level (1985)
Example Mass Balance in the gaseous phase
26Homogenized Medium
Second Step Average procedure
Convolute the equations with a compact support
kernel of size h denoted m.
In the gaseous phase Balance of Mass Balance
of momentum Balance of Energy
In the vegetal phase Balance of Mass Balance
of Energy
27Homogenized Medium
For example
From the Balance of Momentum in the gaseous phase
we obtain the relation
And we define the following Average Quantities
Is the porosity
28Homogenized Medium
Third Step Closure operation
At Step 2 several new quantities has been
defined. They must be related to average
variables It is the Closure operation.
Equations for these new quantities are obtained
by writing that the entropy production is
positive.
We used Rational Extended Thermodynamics
(R.E.T.) Or Extended Irreversible Thermodynamics
(E.I.T.)
Jou, Casas-Vazquez, Lebon
Müller, Ruggeri
29Homogenized Medium
The obtained model is very general and has the
following characteristics
1) Two Temperatures, one for each phases with a
modified Fourier law
2) Contains a model of pyrolysis for the
vegetal with relaxation times
3) The vegetal phase has an internal
structure with possible modelling of chemical
actions of retardant
4) Extended Navier Stokes equation, with memory
30Homogenized Medium
Several Simplifications can be Made
Instantaneous momentum Transfer between Phases
...
31Homogenized Medium
Simplified 3D Model
PHASE W AS WOOD
Energy Balance
Mass Balance
Solid Constituents
Mass Transfer Between Phases wood and air
Liquid Constituent
Gaseous Constituent
32Homogenized Medium
3D Model Continued
PHASE F (AS FLUID) GAS
Energy Balance
Mass Balance
Mass Transfer Between Phases wood and air
Balance of Momentum
Thermodynamics Relations Radiative Transfer
Equation
33Numerical experiment in fire tunnels
1m/s
9m
25cm
6m
15m
Heat flux
Distribution exponentielle de porosité
DH
litière
Bilan de quantité de mouvement Phase gazeuse
Bilan dénergie LitièreGaz
Cinétique Chimique Litière Gaz
Bilans de masse Litièregaz
Équation du transfert radiatif LitièreGaz
34Numerical experiment in fire tunnels
AVI
35A 2D PROPAGATION MODEL
36Propagation Modeling
Hypotheses
Vegetation Height d small compared to the
gigascopic scale
Gigascopic Scale L
Flow Almost Parallel to the ground
37Propagation Modeling
The Ratio ed/Lltlt 1, Small parameter
L can be the size of the fire or the distance to
the fire front
Quantities are continuous across the vegetation
toward ambient air Use of Matched Asymptotic
Expansion on the Whole Domain z gt 0 (vegetation
ambient air)
Inner Part of the Asymptotic Expansion Propagati
on Model
Outer Part of the Asymptotic Expansion
38Propagation Modeling
Model I Only for phase W Propagation Model
Energy Balance
Mass Balance for the cellulose
Mass Balance for the water
Mass Balance for the char
Are quantities deduced from experiments outer
expansion
39Propagation Modeling
40Modélisation de la Propagation
Takes into account Drying, Pyrolysis, Wind, Slope
Radiative flux
with
K is the extinction function
41Propagation Modeling
Highly non linear 5 free boundaries
42 Propagation Modelling
Occupation density 0.5
Moisture 0.07
43 Propagation Modelling
44 Propagation Modelling
Wind effect, 30 mn, 45 mn, 1h15, 1h50
45 Propagation Modelling
Under a certain value of the occupation density
the fire will not propagate
Percolation Density
46FIGHTING MODEL
47PESPECTIVES
48Travail en cours
Caractérisation de la végétation comme milieu
poreux. Thermique et Radiatif
Modèle de flamme dans le modèle de propagation
Rendre opérationnel le modèle de propagation à
très grande échelle. Amélioration de la
convection.
Pris en compte de leffet du retardant sur la
propagation
Modèle simplifié de largage
49NANCY 09-06-05
50Travail en cours
51Level Set or V.O.F. Formulation
52Level Set or V.O.F. Formulation
53Control on the initial density
What happens if the initial density is decreased ?
Simulation
543 QUESTIONSOF OPTIMIZATION AND CONTROL
55Control on the initial density
What happens if the initial density is decreased ?
Simulation
56Propriétés à basse densité
Au dessous dune valeur critique de de la
densité doccupation le feu ne se propage plus.
Densité de Percolation
Expérience de Propagation-Percolation Fractalité
du front ?? Mécanismes mis en jeu ??
57Fire Front Reconstruction Data Assimilation
Question 1
Is it possible to find a initial distribution of
vegetation and a Tgt0 such that
Prevention
58Control on the retardant distribution
Aerial fighting by indirect attack
The dropped fluid Water Ammonium Phosphate
Gum
The Ammonium Phosphate decreases the activation
energy in the pyrolysis law
Simulation
59Fire Front Reconstruction Data Assimilation
height
tilt angle
The flame is defined by
emitted power
rate of spread
60Fire Front Reconstruction Data Assimilation
2) Que se passe-t-il si la densité de
combustible tend vers 0 ?
61Fire Front Reconstruction Data Assimilation
Extinction line
Fire line
Flux meters positions
Data from satellite?
621 QUESTIONOF STABILITY AND UNICITY
63Uniqueness and stability.
Let c the characteristic function of the burning
zone
64Uniqueness and stability.
- For homogeneous conditions of vegetation the
straight line seems to be the only stable
solution - (Depend on wind and slope)
- The direction of propagation seems to be along
the line of maximum rate of spread
65Rate of spread.
Rate of spread is solution of the non linear
egeinvalue problem
Problème qui peut avoir plusieurs solutions ou
pas du tout
66Rate of spread.
Dimensional analysis
Small parameter
We look for a series solution
67Rate of spread.
is the unique solution of
Radius of convergence of the series and
uniqueness ?
68Conclusion
1) Much more questions than answers
2) Mathematicians are welcome
3) Thank you
69TYPOLOGIE DES MODELES
70Modèles Géométriques
Méthode de Enveloppes
Hypothèse sur la forme géométrique du feu
Méthode de construction du front à t dt
Méthode qui marche bien mais fournit des
solutions très régulières
71Modèles empiriques
Modèle de Rothermel
s surface spécifique, d épaisseur couverture
végétale
C charge ducombuxtible sec, r masse vol. sec.
DH chaleur contenue dans la particule sèche
Chaque partie du front est déplacée avec la
vitesse normale R
V vitesse du vent à mi hauteur
tanj pente
Front à linstant t
Hu Humidité des particules de combustible
He Humidité dextinction
Hypothèse
R f( s, d, r, tanj, DH, V, Hu, He)
P
n
R vitesse de propagation
Front à linstant tdt
PRndt
Méthode qui marche bien mais fournit des
solutions très régulières
72Modèles Physiques
Modèle de Réaction diffusion
Equation seule (1)
Système dEquations (2) Réactions
chimiques Dynamiques des populations
Prototype
Modèles dits Physiques ont la structure
73COMPARAISON DES MODELES
74Résultat des Courses
Réaction- Diffusion
Rothermel
Modèles de Réaction diffusion peuvent faire aussi
bien que les modèles denveloppe et de Rothermel
Les modèles denveloppe se comportent très mal à
basse densité ?
75Conclusions partielles
Conclusions
1) Les modèles de propagation dits de
Réaction-Diffusion pourraient fournir plus
dinformation que les modèles semi empiriques.
2) Théoriquement ils peuvent faire au moins
autant que les modèles denveloppe ou de type
Rothermel.
3) Ils sont plus faciles à calibrer
Questions
4) Peuvent ils faire plus ? Et rendre compte de
comportements très irréguliers du front de flamme
5) Si oui quelle stratégie de modélisation ?
76Stratégie de Modélisation
Modèle Détaillé
Réduction
Spécifications Echelle Objectifs
Modèle Souhaité
Complexification