Title: Vesicles under flow
1Soft matter, complex fluids and morphogenesis
2CNRS and Univ. J. Fourier Grenoble I
3(No Transcript)
4DyFCoM Dynamique de Fluides Complexes et
Morphogenèse
chercheurs et enseignant-chercheurs
expérimentateurs, théoriciens, 1 Mathématicien
appliqué
Morphogenèse croissance, phénoménologie, rides
sur le sable
contraintes, géophysique.
Fluides complexes vésicules, fluides
viscoélastiques, plasticité, mousse,
globules rouges, cellules,
rhéologie
5A l échelle du site Grenoblois PPF Dynamique
des Systèmes Complexes
Physique, Mécanique, Géophysique, Mathématiques
appliquées
Equipements communs, recherche pluridisciplinaire
(thèses, postdoc en commun, groupes de
travail.) et une rencontre scientifique par an
6(No Transcript)
7(No Transcript)
8Cell crawling
9Actin Polymerization at bead/layer interface
K. John, P. Peyla, K. Kassner, C. Misbah
10Biomimetic entities vesicles
- Simple enough to lend themeselves to experimental
control - Sound modelling
- Sound cooperation between experiments, theory,
and numerical simulations
11Giant Unilamellar Vesicles (GUV)
12A simple model of cell membrane
13Even a unique vesicle is complex!
- Several types of motions and dynamics
- deformability change drastically rheology
- link between underlying dynamics and rheology
14Catastrophes
15Nonlinear dynamics of sand ripple formation
Z. Csahok, A. Valance, F. Rioual
16(No Transcript)
17ATG Intability (Asaro-Tiller,1972 -Grinfeld, 1986)
Quantum dots formation
pyramid-shaped quantum dots grown from indium,
gallium, and arsenic. Each dot is about 20
nanometers wide and 8 nanometers in height.
18Misbah C., Renard F., Gratier J.P., Kassner K.,
Geoph. Res. Lett., 31, L6618 (2004). J.
Schmittbuhl, F. Renard, J. P. Gratier, and R.
Toussaint Phys. Rev. Lett. 93, 238501 (2004)
19Complex Fluids
One of the most exciting area of modern science
Link between micro and macroscales, generic
constitutive laws are lacking, largely
inexplored area by physicists
20Microfluidics
21La microfluidique
La taille de lobjet devient comparable à celle
du canal Rg ou d ? H gt
importance de l hydrodynamique, des interactions
avec la paroi, adhésion....
Macromolécules
Diamètre d
Cellules, vésicules contraintes par le
confinement gt influence sur la rhéologie
22Microfluidique de Fluides complexes (polymères
en solution) P. Peyla et C. Misbah
Boules level set, et interboules ressort
 imaterielÂ
23Polymères Nuds et leur topologie
O. Pierre-Louis
Inclure dans l étude de la rhéologie?
24Simulation 3D d écoulements complexes (M. Ismail)
25Dynamics and rheology of Suspension of vesicles
and cells (Danker, Ismail, Maitre,
Cottet,Bonnetier, Raoult, Misbah) Rheology of
polymers, microfluidics (Peyla, Misbah) Rheology
of foams (Graner, Saramito) Models of cell
motility (John, Fourcade, Peyla,
Misbah) Rheology of the crust (Misbah,
Renard) Morphogenesis in nonequilibrium systems
(Pierre-Louis, Misbah) gtgtgtgtgtgt present in
condensed and soft matter, complex fluids,
biology
26Catastrophes, and patterns are unavoidable
Patterns in cells (e.g. asters) Pattern in nature
in general Pattern are intimately linked to
nonequilibrium dissipative structures Patterns
occur in complex fluids (add complex to
complex) Bifurcations and catastrophes are the
rule
(growth, nanotsructures, chemistery, sand
ripples.
27Modelling
- Boundary integral formulation
- Phase-field
- Analytical, scaling arguments, pertubrative
- Large scale numerical simulations
28Modeling migration of vesicles
Stokes equations
29Integral formulation
30Phase field models
Sharp interface
Diffuse interface
31Diffuse membrane model, advected field
Biben, Misbah
EPJB, 2002, Phys. Rev. E 2003
Integral formulation limited to linear bulk
equations not
systematic for topology changes
somewhat difficult to handle
An advected-field is akin to phase-field
Idea do not treat explicitly the boundary
(membrane)
Is an advected field (colour function)
32Minimum in 1D
33AF across the vesicle
34(No Transcript)
35Lift of vesicles, their tumbling and their
rheology
36 Lift force
Cantat, Misbah Phys. Rev. Lett. 1999., and EPJE
2003, EPL, 2004
M. Abkarian, C. Lartigue, A. Viallat. Phys.
Rev. Lett. 2002
37Lift force
38air
Ball translation
39air
Ball translation
40air
Ball translation
41air
Increase of pressure (Bernoulli)
Ball translation
Drop pressure (Benouilli)
42air
Increase of pressure (Bernoulli)
Lift force
Ball translation
Drop pressure (Benouilli)
43Reverssibility of the stokes equations
is also a solution
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48Mirror image
49Mirror image
50Mirror image
Blue arroworange one
No lateral deviation
512. Dynamics near soft walls
- Blood vessels covered with glycocalyx
- Lift force maintaining cells away from walls
- Increase resistance to flow
- Regulate hematocrit
J. Beaucourt, T. Biben C. Misbah, Europhys.
Lett. 2004
52Glycocalyx (glycosylated molecules) 1) direct
specific interaction 2) prevents undesirable
adhesion.
Available data indicate Cw close to 0.1 in
postcapillary venules
532. Dynamics near soft walls
J. Beaucourt, T. Biben and C. Misbah , Euro.
Phys. Lett.(2004).
54(No Transcript)
55Theory/experiments symbosis
56Pendulum analogy
57Pendulum analogy
Fixed points
58(No Transcript)
59Stable
60Unstable
61(No Transcript)
62Saddle
Node
63Close to critical point
64(No Transcript)
65(No Transcript)
66Analytical theory
Small deformation theory
1) solve Stokes equations inside and ouside, with
BC 2) Use inextensibility constraint 3) Close
self-consistently the equations.
67Shape preserving RCte
Tumbling if
Good agreement with full numerical analysis
68An other fixed point
Stability of which
Oscillation (eigenvalue purely imaginary
coexistence with tumbling
69Tank-treading motion Tumbling if viscosity
contrast is high enough (saddle-node
bifurcation) Vacillating-breathing (coexistence
with tumbling)
70Results from the equations
They exhibit tank-treading, tumbling and VB
depending on the parameters
71Averages
72Averages
membrane force
membrane normal
73Averages
membrane force
membrane normal
Rheology is contained in this term
74Results
stress
Strain rate
and
Coeff. Depend on
Wrotation
75Shear thinning and normal stress differences
Rheology depends on underlying dynamics (in
progress with G. Danker)
76Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
77Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
C. Misbah, Phys. Rev. Lett. (January 2006).
Area
78Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
C. Misbah, Phys. Rev. Lett. (January 2006).
Area