Vesicles under flow - PowerPoint PPT Presentation

1 / 78
About This Presentation
Title:

Vesicles under flow

Description:

globules rouges, cellules, rh ologie. Journ es th orie, Grenoble. A l ' ... Cellules, v sicules contraintes par le confinement = influence sur la rh ologie. La ... – PowerPoint PPT presentation

Number of Views:142
Avg rating:3.0/5.0
Slides: 79
Provided by: lelabo
Category:

less

Transcript and Presenter's Notes

Title: Vesicles under flow


1
Soft matter, complex fluids and morphogenesis
2
CNRS and Univ. J. Fourier Grenoble I
3
(No Transcript)
4
DyFCoM Dynamique de Fluides Complexes et
Morphogenèse
chercheurs et enseignant-chercheurs
expérimentateurs, théoriciens, 1 Mathématicien
appliqué
Morphogenèse croissance, phénoménologie, rides
sur le sable
contraintes, géophysique.
Fluides complexes vésicules, fluides
viscoélastiques, plasticité, mousse,
globules rouges, cellules,
rhéologie
5
A l échelle du site Grenoblois PPF Dynamique
des Systèmes Complexes
Physique, Mécanique, Géophysique, Mathématiques
appliquées
Equipements communs, recherche pluridisciplinaire
(thèses, postdoc en commun, groupes de
travail.) et une rencontre scientifique par an
6
(No Transcript)
7
(No Transcript)
8
Cell crawling
9
Actin Polymerization at bead/layer interface
K. John, P. Peyla, K. Kassner, C. Misbah
10
Biomimetic entities vesicles
  • Simple enough to lend themeselves to experimental
    control
  • Sound modelling
  • Sound cooperation between experiments, theory,
    and numerical simulations

11
Giant Unilamellar Vesicles (GUV)
12
A simple model of cell membrane
13
Even a unique vesicle is complex!
  • Several types of motions and dynamics
  • deformability change drastically rheology
  • link between underlying dynamics and rheology

14
Catastrophes
15
Nonlinear dynamics of sand ripple formation
Z. Csahok, A. Valance, F. Rioual
16
(No Transcript)
17
ATG Intability (Asaro-Tiller,1972 -Grinfeld, 1986)
Quantum dots formation
pyramid-shaped quantum dots grown from indium,
gallium, and arsenic. Each dot is about 20
nanometers wide and 8 nanometers in height.
18
Misbah C., Renard F., Gratier J.P., Kassner K.,
Geoph. Res. Lett., 31, L6618 (2004). J.
Schmittbuhl, F. Renard, J. P. Gratier, and R.
Toussaint Phys. Rev. Lett. 93, 238501 (2004)
19
Complex Fluids
One of the most exciting area of modern science
Link between micro and macroscales, generic
constitutive laws are lacking, largely
inexplored area by physicists
20
Microfluidics
21
La microfluidique
La taille de lobjet devient comparable à celle
du canal Rg ou d ? H gt
importance de l hydrodynamique, des interactions
avec la paroi, adhésion....
Macromolécules
Diamètre d
Cellules, vésicules contraintes par le
confinement gt influence sur la rhéologie
22
Microfluidique de Fluides complexes (polymères
en solution) P. Peyla et C. Misbah
Boules level set, et interboules ressort
 imateriel 
23
Polymères Nuds et leur topologie
O. Pierre-Louis
Inclure dans l étude de la rhéologie?
24
Simulation 3D d écoulements complexes (M. Ismail)
25
Dynamics and rheology of Suspension of vesicles
and cells (Danker, Ismail, Maitre,
Cottet,Bonnetier, Raoult, Misbah) Rheology of
polymers, microfluidics (Peyla, Misbah) Rheology
of foams (Graner, Saramito) Models of cell
motility (John, Fourcade, Peyla,
Misbah) Rheology of the crust (Misbah,
Renard) Morphogenesis in nonequilibrium systems
(Pierre-Louis, Misbah) gtgtgtgtgtgt present in
condensed and soft matter, complex fluids,
biology
26
Catastrophes, and patterns are unavoidable
Patterns in cells (e.g. asters) Pattern in nature
in general Pattern are intimately linked to
nonequilibrium dissipative structures Patterns
occur in complex fluids (add complex to
complex) Bifurcations and catastrophes are the
rule
(growth, nanotsructures, chemistery, sand
ripples.
27
Modelling
  • Boundary integral formulation
  • Phase-field
  • Analytical, scaling arguments, pertubrative
  • Large scale numerical simulations

28
Modeling migration of vesicles
Stokes equations
29
Integral formulation
30
Phase field models
Sharp interface
Diffuse interface
31
Diffuse membrane model, advected field
Biben, Misbah
EPJB, 2002, Phys. Rev. E 2003
Integral formulation limited to linear bulk
equations not
systematic for topology changes
somewhat difficult to handle
An advected-field is akin to phase-field
Idea do not treat explicitly the boundary
(membrane)
Is an advected field (colour function)
32
Minimum in 1D
33
AF across the vesicle
34
(No Transcript)
35
Lift of vesicles, their tumbling and their
rheology
36
Lift force
Cantat, Misbah Phys. Rev. Lett. 1999., and EPJE
2003, EPL, 2004
M. Abkarian, C. Lartigue, A. Viallat. Phys.
Rev. Lett. 2002
37
Lift force
38
air
Ball translation
39
air
Ball translation
40
air
Ball translation
41
air
Increase of pressure (Bernoulli)
Ball translation
Drop pressure (Benouilli)
42
air
Increase of pressure (Bernoulli)
Lift force
Ball translation
Drop pressure (Benouilli)
43
Reverssibility of the stokes equations
is also a solution
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
Mirror image
49
Mirror image
50
Mirror image
Blue arroworange one
No lateral deviation
51
2. Dynamics near soft walls
  • Blood vessels covered with glycocalyx
  • Lift force maintaining cells away from walls
  • Increase resistance to flow
  • Regulate hematocrit

J. Beaucourt, T. Biben C. Misbah, Europhys.
Lett. 2004
52
Glycocalyx (glycosylated molecules) 1) direct
specific interaction 2) prevents undesirable
adhesion.
Available data indicate Cw close to 0.1 in
postcapillary venules
53
2. Dynamics near soft walls
J. Beaucourt, T. Biben and C. Misbah , Euro.
Phys. Lett.(2004).
54
(No Transcript)
55
Theory/experiments symbosis
56
Pendulum analogy
57
Pendulum analogy
Fixed points
58
(No Transcript)
59
Stable
60
Unstable
61
(No Transcript)
62
Saddle
Node
63
Close to critical point
64
(No Transcript)
65
(No Transcript)
66
Analytical theory
Small deformation theory
1) solve Stokes equations inside and ouside, with
BC 2) Use inextensibility constraint 3) Close
self-consistently the equations.
67
Shape preserving RCte
Tumbling if
Good agreement with full numerical analysis
68
An other fixed point
Stability of which
Oscillation (eigenvalue purely imaginary
coexistence with tumbling
69
Tank-treading motion Tumbling if viscosity
contrast is high enough (saddle-node
bifurcation) Vacillating-breathing (coexistence
with tumbling)
70
Results from the equations
They exhibit tank-treading, tumbling and VB
depending on the parameters
71
Averages
72
Averages
membrane force
membrane normal
73
Averages
membrane force
membrane normal
Rheology is contained in this term
74
Results
stress
Strain rate
and
Coeff. Depend on
Wrotation
75
Shear thinning and normal stress differences
Rheology depends on underlying dynamics (in
progress with G. Danker)
76
Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
77
Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
C. Misbah, Phys. Rev. Lett. (January 2006).
Area
78
Rheology of a dilute suspension
A. Einstein, Annln. Phys. 19, 289 (1906)
Corrections. Annln. Phys. 34, 591 (1911).
C. Misbah, Phys. Rev. Lett. (January 2006).
Area
Write a Comment
User Comments (0)
About PowerShow.com