Title: Results from SNO and Other Solar Neutrino Experiments
1Results from SNO and Other Solar Neutrino
Experiments
- R.G. Hamish Robertson
- University of Washington
- for
- The Sudbury Neutrino Observatory Collaboration
2Solar Neutrino Program
Comm.
D2O
Salt
SNO
D2O
3He Counters
SK
Cl-Ar
SAGE, Gallex, GNO
3(No Transcript)
4SAGE (January 1990 March 2003)
With Weight Factors
5GALLEX - GNO Davis plot
GNO 58 solar runs
GALLEX 65 solar runs
6GNO Results
completed 58 solar runs 1713 days still
counting 5 solar runs (30 days) blanks 12
GNO (31/08/2003) 62.9 5.4 2.5 SNU (L 68.
9. K 60. 7.) GALLEX 77.5 6.2 4.3-4.7
SNU GALLEXGNO 69.3 4.1 3.6 SNU
SAGE 69.1 4.3 -4.2 SNU
Further minor improvements expected in a short
time ( analysis of counter calibration data)
7New Low-energy Solar n Detectors
8Recent Super-K Analysis
Full zenith-angle dependence 1496-day
dataset hep-ex/0309011 (Michael Smy, TAUP)
9Sudbury Neutrino Observatory
1000 tonnes D2O
Support Structure for 9500 PMTs, 60 coverage
12 m Diameter Acrylic Vessel
1700 tonnes Inner Shielding H2O
5300 tonnes Outer Shield H2O
Urylon Liner and Radon Seal
10? Reactions in SNO
p
- Gives ne energy spectrum well
- Weak direction sensitivity ? 1-1/3cos(q)
- ne only.
- Measure total 8B n flux from the sun.
- Equal cross section for all n types
- Low Statistics
- Mainly sensitive to ne,, some
- sensitivity to n? and n?
- Strong direction sensitivity
11Neutrino Flavor Composition of 8B Flux
Fluxes (106 cm-2 s-1) ne 1.76(11) nmt
3.41(66) ntotal 5.09(64) nSSM 5.05
12Total spectrum (NC CC ES)
13tan2q12-Dm122
Solar Only
SolarKL rate
SolarKL spect.
de Holanda Smirnov, hep-ph/0205241,
hep-ph/0212270
14Advantages of NaCl for Neutron Detection
- Higher capture cross section
- Higher energy release
- Many gammas
s 44 b
35Cln
s 0.0005 b
8.6 MeV
2Hn
6.0 MeV
3H
36Cl
15Neutron Capture Efficiency in SNO
35Cl(n,g)36Cl Average Eff. 0.399 Te 5.5 MeV
and Rg 550 cm
2H(n,g)3H Average Eff. 0.144 Te 5.0 MeV and
Rg 550 cm
Radial Position of 252Cf Source, cm
16Cherenkov light and b14
17Use of b14 to distinguish neutrons and e-
18Addition of Mott scattering to EGS4
Angular Distribution of 5 MeV electrons after
passing through 1 mm of water
19Blind Analysis
- Three blindfolds for the analysts
- Include unknown fraction of neutrons that follow
muons - Spoil the NC cross section in MC
- Veto an unknown fraction of candidate events
20b14 Distributions for SNO Salt Data
Data from July 26, 2001 to Oct. 10, 2002 254.2
live days 3055 candidate events 1339.6 63.8
-61.5 CC 1344.2 69.8 -69.0 NC 170.3 23.9
-20.1 ES
21Sun-angle distributions
Away from sun
Toward sun
22Energy spectra
Electron kinetic energy
23Sources of Background
- 2H(g,n)p by 214Bi, 208Tl
- Cosmic rays neutrons, spallation products
- Atmospheric neutrinos, reactors, CNO
- Fission (U, Cf)
- (a,n) reactions
- 24Na activation (neck, calibration, recirc,
muons) - AV events
24Radioassay
- Bottom of vessel
- 2/3 way up
- Top of vessel
25Backgrounds
26Radial distributions
550
600
700 cm
0
(Reconstructed radius, cm/ 600)3
27Uncertainties in Fluxes ()
Internal neutrons
28CC, ES, and NC fluxes from Pure D2O Phase
Shape of 8B spectrum in CC and ES not constrained
Standard (Ortiz et al.) shape of 8B spectrum in
CC and ES
29Salt Phase Box Opened Aug. 13, 2003
30Total Active 8B Fluxes
In units of Bahcall, Pinsonneault, Basu SSM, 5.05
x 106 cm-2 s-1
312-n oscillation region defined by SNO
32tan2q12-Dm122 before Salt Phase
Solar Only
SolarKL rate
SolarKL spect.
de Holanda Smirnov, hep-ph/0205241,
hep-ph/0212270
33For the unconstrained fits
Correlation coefficients
Ratio
34Closing in on Dm2, q
--90 --95 --99 --99.73
LMA I only at gt 99 CL
35One-dimensional marginalized limits on Dm2 and
q Maximal mixing rejected at 5.4 s
LMA 1
36Results from SNO -- Salt Phase
Oscillation Parameters, 2-D joint 1-s boundary
lt 1 probability of LMA I
Marginalized 1-D 1-s errors
Maximal mixing rejected at 5.4 s
A paper plus a companion guide can be found at
sno.phy.queensu.ca this morning. Submitted to
PRL nucl-ex/0309004.
37SNO gratefully acknowledges
Canada Natural Sciences and Engineering
Research Council Northern Ontario Heritage Fund
Corporation Inco Atomic Energy of Canada,
Ltd. Ontario Power Generation High Performance
Computing Virtual Laboratory National Research
Council Canada Foundation for Innovation US De
partment of Energy UK Particle Physics and
Astronomy Research Council
38The SNO Collaboration
S.D. Biller, M.G. Bowler, B.T. Cleveland, G.
Doucas, J.A. Dunmore, H. Fergani, K. Frame, N.A.
Jelley, S. Majerus, G. McGregor, S.J.M. Peeters,
C.J. Sims, M. Thorman, H. Wan Chan Tseung, N.
West, J.R. Wilson, K. Zuber Oxford
University E.W. Beier, M. Dunford, W.J.
Heintzelman, C.C.M. Kyba, N. McCauley, V.L.
Rusu, R. Van Berg University of
Pennsylvania S.N. Ahmed, M. Chen, F.A. Duncan,
E.D. Earle, B.G. Fulsom, H.C. Evans, G.T. Ewan,
K. Graham, A.L. Hallin, W.B. Handler, P.J.
Harvey, M.S. Kos, A.V. Krumins, J.R. Leslie, R.
MacLellan, H.B. Mak, J. Maneira, A.B. McDonald,
B.A. Moffat, A.J. Noble, C.V. Ouellet, B.C.
Robertson, P. Skensved, M. Thomas,
Y.Takeuchi Queens University D.L.
Wark Rutherford Laboratory and University of
Sussex R.L. Helmer TRIUMF A.E. Anthony, J.C.
Hall, J.R. Klein University of Texas at
Austin T.V. Bullard, G.A. Cox, P.J. Doe, C.A.
Duba, J.A. Formaggio, N. Gagnon, R. Hazama, M.A.
Howe, S. McGee, K.K.S. Miknaitis, N.S. Oblath,
J.L. Orrell, R.G.H. Robertson, M.W.E. Smith,
L.C. Stonehill, B.L. Wall, J.F.
Wilkerson University of Washington
- T. Kutter, C.W. Nally, S.M. Oser, C.E. Waltham
- University of British Columbia
- J. Boger, R.L. Hahn, R. Lange, M. Yeh
- Brookhaven National Laboratory
- A.Bellerive, X. Dai, F. Dalnoki-Veress, R.S.
Dosanjh, D.R. Grant, - C.K. Hargrove, R.J. Hemingway, I. Levine, C.
Mifflin, E. Rollin, - O. Simard, D. Sinclair, N. Starinsky, G. Tesic,
D. Waller - Carleton University
- P. Jagam, H. Labranche, J. Law, I.T. Lawson, B.G.
Nickel, - R.W. Ollerhead, J.J. Simpson
- University of Guelph
- J. Farine, F. Fleurot, E.D. Hallman, S. Luoma,
- M.H. Schwendener, R. Tafirout, C.J. Virtue
- Laurentian University
39 40SNO Phase III (NCD Phase)- Begins 04
- 3He Proportional Counters (NC Detectors)
40 Strings on 1-m grid 440 m total active
length
Detection Principle 2H ?x ? p n ?x - 2.22
MeV (NC) 3He n ? p 3H 0.76 MeV
PMT
Physics Motivation Event-by-event separation.
Measure NC and CC in separate data streams.
Different systematic uncertainties than
neutron capture on NaCl. NCD array removes
neutrons from CC, calibrates remainder. CC
spectral shape.
NCD
41Why Event-by-Event?
42Counts per second
N. Oblath
Time after muon, s
4316N in D2O
Counts per s
A.D. Marino
44(a,n) Reactions
45BOREXINO radiopurity requirements
If secular equilibrium is broken contaminants
such as 210Pb, 210Po may be a serious problem
46GALLEX GNO Seasonal variations
Winter-Summer (statistical error only)
GNO only (58 SRs) Winter (32 SR) 58.77.1-6.8
SNU Summer (26 SR) 69.08.8-8.3 SNU W-S -10
11 SNU
GNO Gallex (123 SRs) Winter (66 SR)
66.55.6-5.4 SNU Summer (57 SR) 74.16.4-6.2
SNU W-S -7.6 9 SNU
47(No Transcript)
48(No Transcript)
49SNO KamLAND
3s
Day Night Contours ()
1s
CC/NC Contours
de Holanda, Smirnov hep-ph/ 0212270
50Neutron Capture Efficiency in SNO
35Cl(n,g)36Cl Average Eff. 0.399 Te 5.5 MeV
and Rg 550 cm
2H(n,g)3H Average Eff. 0.144 Te 5.0 MeV and
Rg 550 cm
Radial Position of 252Cf Source, cm
51Backgrounds
52Uncertainty Budget