Derivative-Free Optimization - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Derivative-Free Optimization

Description:

Derivative-Free Optimization J.-S. Roger Jang ( ) CS Dept., Tsing Hua Univ., Taiwan http://www.cs.nthu.edu.tw/~jang jang_at_cs.nthu.edu.tw – PowerPoint PPT presentation

Number of Views:249
Avg rating:3.0/5.0
Slides: 25
Provided by: neuralCs7
Category:

less

Transcript and Presenter's Notes

Title: Derivative-Free Optimization


1
Derivative-Free Optimization
Derivative-Free Optimization
  • J.-S. Roger Jang (???)
  • CS Dept., Tsing Hua Univ., Taiwan
  • http//www.cs.nthu.edu.tw/jang
  • jang_at_cs.nthu.edu.tw

2
Outline
  • Genetic algorithms (GA)
  • Simulated Annealing (SA)
  • Downhill simplex search
  • Random search

3
The Big Picture
Soft Computing
4
Genetic Algorithms
  • Motivation
  • Look at what evolution brings us?
  • Vision
  • Hearing
  • Smelling
  • Taste
  • Touch
  • Learning and reasoning
  • Can we emulate the evolutionary process with
    today's fast computers?

5
Genetic Algorithms
  • Terminology
  • Fitness function
  • Population
  • Encoding schemes
  • Selection
  • Crossover
  • Mutation
  • Elitism

6
Genetic Algorithms
  • Binary encoding

Chromosome
(11, 6, 9) 1011 0110 1001
Gene
Crossover
1 0 0 1 1 1 1 0
1 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 1 1 1 0
Crossover point
Mutation
1 0 0 1 1 1 1 0
1 0 0 1 1 0 1 0
Mutation bit
7
Genetic Algorithms
  • Flowchart

10010110 01100010 10100100 10011001 01111101 . .
. . . . . . . . . .
10010110 01100010 10100100 10011101 01111001 . .
. . . . . . . . . .
Elitism
Selection
Crossover
Mutation
Current generation
Next generation
8
Genetic Algorithms
  • Example Find the max. of the peaks function
  • z f(x, y) 3(1-x)2exp(-(x2) - (y1)2) -
    10(x/5 - x3 - y5)exp(-x2-y2)
    -1/3exp(-(x1)2 - y2).

9
Genetic Algorithms
  • Derivatives of the peaks function
  • dz/dx -6(1-x)exp(-x2-(y1)2) -
    6(1-x)2xexp(-x2-(y1)2) -
    10(1/5-3x2)exp(-x2-y2) 20(1/5x-x3-y5)
    xexp(-x2-y2) - 1/3(-2x-2)exp(-(x1)2-y2)
  • dz/dy 3(1-x)2(-2y-2)exp(-x2-(y1)2)
    50y4exp(-x2-y2) 20(1/5x-x3-y5)yexp(-x
    2-y2) 2/3yexp(-(x1)2-y2)
  • d(dz/dx)/dx 36xexp(-x2-(y1)2) -
    18x2exp(-x2-(y1)2) - 24x3exp(-x2-(y1)2
    ) 12x4exp(-x2-(y1)2) 72xexp(-x2-y2)
    - 148x3exp(-x2-y2) - 20y5exp(-x2-y2)
    40x5exp(-x2-y2) 40x2exp(-x2-y2)y5
    -2/3exp(-(x1)2-y2) - 4/3exp(-(x1)2-y2)x2
    -8/3exp(-(x1)2-y2)x
  • d(dz/dy)/dy -6(1-x)2exp(-x2-(y1)2)
    3(1-x)2(-2y-2)2exp(-x2-(y1)2)
    200y3exp(-x2-y2)-200y5exp(-x2-y2)
    20(1/5x-x3-y5)exp(-x2-y2) -
    40(1/5x-x3-y5)y2exp(-x2-y2)
    2/3exp(-(x1)2-y2)-4/3y2exp(-(x1)2-y2)

10
Genetic Algorithms
  • GA process

Initial population
5th generation
10th generation
MATLAB file go_ga.m
11
Genetic Algorithms
  • Performance profile

MATLAB file go_ga.m
12
Simulated Annealing
  • Analogy

13
Simulated Annealing
  • Terminology
  • Objective function E(x) function to be
    optiimized
  • Move set set of next points to explore
  • Generating function to select next point
  • Acceptance function h(DE, T) to determine if the
    selected point should be accept or not. Usually
    h(DE, T) 1/(1exp(DE/(cT)).
  • Annealing (cooling) schedule schedule for
    reducing the temperature T

14
Simulated Annealing
  • Flowchart

Select a new point xnew in the move sets via
generating function
Compute the obj. function E(xnew)
Set x to xnew with prob. determined by h(DE, T)
Reduce temperature T
15
Simulated Annealing
  • Example Travel Salesperson Problem (TSP)

How to transverse n cities once and only once
with a minimal total distance?
16
Simulated Annealing
  • Move sets for TSP

12
12
10
10
3
3
Translation
1
1
Inversion
6
6
7
7
2
2
9
11
9
11
8
8
4
5
4
5
1-2-3-4-5-6-7-8-9-10-11-12
1-2-3-4-5-9-8-7-6-10-11-12
12
12
10
10
3
3
Switching
1
1
6
6
7
7
2
2
9
11
9
11
8
8
4
5
4
5
1-2-11-4-8-7-5-9-6-10-3-12
1-2-3-4-8-7-5-9-6-10-11-12
17
Simulated Annealing
  • A 100-city TSP using SA

Initial random path
During SA process
Final path
MATLAB file tsp.m
18
Simulated Annealing
  • 100-city TSP with penalities when crossing the
    circle

Penalty 0
Penalty 0.5
Penalty -0.3
19
Random Search
  • Properties
  • Intuitive
  • Simple
  • Analogy
  • Get down to a valley blindfolded
  • Two heuristics
  • Reverse step
  • Bias direction

20
Downhill Simplex Search
  • Simplex a set of n1 points in n-dim. space
  • A triangle in a 2D space
  • A tetrahedron in a 3D space
  • Concept of downhill simplex search
  • Repeatedly replaces the highest points with a
    lower one
  • Consecutive successful replacements lead to the
    enlargement of the simplex
  • Consecutive unsucessful replacements lead to the
    shrinkage of the simplex

21
Downhill Simplex Search
  • Flowchart
  • Figure 7.9 in page 188
  • Behavior
  • The simplex can adapt itself to the objective
    function landscape (just like an amoeba), and
    eventually converges to a nearby local minimum.
  • Program
  • The search procedure is implemented as a function
    fmins.m that comes with MATLAB.

22
Downhill Simplex Search
  • Example Find the min. of the peaks function
  • z f(x, y) 3(1-x)2exp(-(x2) - (y1)2) -
    10(x/5 - x3 - y5)exp(-x2-y2)
    -1/3exp(-(x1)2 - y2).

MATLAB file go_simp.m
23
Random Search
  • Flowchart

Select a random dx
f(xbdx)ltf(x)?
yes
x x b dx b 0.2 b 0.4 dx
no
f(xb-dx)ltf(x)?
yes
x x b - dx b b - 0.4 dx
no
b 0.5 b
24
Random Search
  • Example Find the min. of the peaks function
  • z f(x, y) 3(1-x)2exp(-(x2) - (y1)2) -
    10(x/5 - x3 - y5)exp(-x2-y2)
    -1/3exp(-(x1)2 - y2).

MATLAB file go_rand.m
Write a Comment
User Comments (0)
About PowerShow.com