Title: Antiferromagnetic semiconductors: A new half-metallic system
1Antiferromagnetic semiconductors A new
half-metallic system
- Hisazumi Akai
- Masako Ogura
- Department of Physics
- Osaka University
2What is half-metallicity?
Half-metallic antiferromagnetic semiconductors
- metallic only in one spin channel, say up.
- semi-conducting or insulating as for the other
spin channel, i.e., down. - normally possible for alloys, typically 2 - 4
components.
EF
metal
E
insulator
3Typical half-metallic alloys
All ferromagnetic
- half-heusler NiMnSb
- full-heusler Co2MnAl
- perovskites (CaLa)MnO3
- double perovskites Sr2FeReO6
- oxides CrO2
- zinc-blendes CrAs
- diluted magnetic semiconductors (GaMn)As
4Electronic structure
- in most cases, band structure calculations are
available. - half and full heuslers
- I. Galanakis and P.H. Dederichs, Phys. Rev. B66,
174429 (2002), B66, 134428 (2002). - zincblende
- M. Shirai, J. Appl. Phys. 93, 6844 (2003).
- I. Galanakis and P. Mavropoulos, Phys. Rev. B67,
104417 (2003). - double perovskites
- K.I. Kobayashi et al., Nature 395, 677 (1998),
Phys. Rev. B 59, 11159 (1999). - W.E. Pickett, Phys. Rev. B57 10613 (1998).
5Full heusler alloys
I. Galanaskis et al., Phys. Rev B 66, 174429
(2002)
6Magnetization of full heusler alloys
- Slator-Pauling like behevior
n 3 t1u 3 t2g 2 eg 1 s 3 p 12
I. Galanaskis et al., Phys. Rev B 66, 174429
(2002)
M Z-24
7Half heusler alloys
M Z-18
I. Galanaskis et al., Phys. Rev B 66, 134428
(2002)
8Zinc-blendes
M Z-8
9Double perovskites
B-site ordering
Sr2FeMoO6 half-metallic ferro Sr2FeWO6
antiferro Sr2FeReO6 half-metallic ferro
K.I. Kobayashi et al., Phys. Rev. B 59, 11159
(1999).
10New class of half-metallic systems DMS
- DMS diluted magnetic semiconductors
- (In, Mn)As
- (Ga, Mn)As
- (Zn, Co)O, (Zn, V)O
- (Ga, Mn)N, (Ga, Cr)N
- (Cd, Mn)GeP2, (Zn, Mn)GeP2
- (Ti, Cr)O2
- (Zn, Cr)Se
- .
11Theoretical Approach todiluted magnetic
semiconductors
(In100-x-y-z Mn?x Mn?y Asz) As
H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
12Carrier induced ferromagnetism and the doping
effects
(In
Mn
Mn
?
A
)As
94-x
6-y
y
x
E(mRy)
Concentration of A ()
Carrier concentration
13Mechanism of ferromagnetism
- Doble exchange vs. superexchan
- Impurity bands
- Symmetry of orbitals
Mn2
Mn3
14Zinc-blende CrAs
ferro E0Ry
non-magnetic E0.0734Ry
spin-glass E0.0205Ry
Tc1880 C
15Double exchange (many electron picture)
down
Ferro
DE -Vdp2/D
up
D
Cr
Cr
As
Vdp
Vdp
Superexchange
Antiferro
DE -Vdp4/D2/JH
JH
Cr
Cr
As
16Zinc-blende MnSb
ferro
non-magnetic
spin-glass
Tc970 C
Does double exchange explain ferromagnetism?
17Local DOS of MnSb
Zenners pd-hybridization mechanism also seems to
work.
18Pd hybridization (many electron picture)
Ferro
DE -4Vdp2/D
Sb
Vdp
Vdp
Mn
Mn
Antiferro
DE -2Vsp2/D
Sb
Mn
Mn
19What is the half-metallic antiferromagnet ?
From symmetry, it is impossible to realize
half-metallic bulk antiferromagnetism.
Yet, it is possible to realize ferrimagnetism
with zero magnetization.
Could be even more useful than half-metallic
ferromagnets. High TN, insensitive to external
fields,
- van Leuken and de Groot, Phys. Rev. Lett. 74,
1171 (1995).
20Theoretical predictions
- W.E. Pickett, Phys. Rev. B57, 10613 (1998).
Half-metallic antiferromagnetism (ferri)
La2VCuO6 La2MnVO6 La2MnCoO6
Mn3d
V3d
(B-site ordering double provskites)
- New type of spintronics materials
- Single spin superconductors
V3d
Mn3d
EF
21Prediction by Pickett
Phys. Rev. B57, 10613 (1998)
EF.EA.F.
V d1 - Cu d9
EF.gtEA.F.
Mn d4 - V d2
EF.ltEA.F.
Mn d4 - Co d6
22Experiments
- M. Uehara, M. Yamada and Y. Kimishima, Solid
State Commun. (2003)
CaLaVMoO6 TN120K SrLaVMoO6 TN130K
(AB-site ordering double perovskites)
23AB-site ordering type
CaLaVMoO6
M. Uehara, M. Yamada and Y. Kimishima, Solid
State Commun. 129, 385 (2004).
experiment
CaLaVMoO6 TN120K SrLaVMoO6 TN130K
calculation Ferrimagnet m0.6mB
Very close to half-metallic antiferromagnet
24Other candidates
- Band gap technology
- Semiconductors
- Chalcopyrites
- Many others
EF
metal
CB
VB
E
insulator
25HM AF DMS
- HF ferromagnetic DMS
- double exchange and/or pd hybridization
- HF antiferromagnetic DMS
- due to mainly double exchange
26Traditional DMS (single electron picture)
E
E
- Consider the situation where the ttwo same
magnetic ions whose d electron number more than
or less than 5 exist - Compare the parallel (upper) or anti-parallel
(lower) coupling of the local magnetic moments. - Anti-parallel coupling is stabilized by the
super-exchange (2nd order perturbation.) - Parallel coupling is stabilized by the double
exchange (1st order perturbation.) - Normally the 1st order perturbation prevails the
2nd order perturbation and the ferromagnetic
coupling is more stable than antiferromagnetic
one - However, near the half-filling, the double
exchange that is proportional to the number of
holes or electrons does not work anymore and the
antiferromagnetic coupling is realized.
hybridization
ferro
hybridization
Cr
Cr
E
E
antiferro
hybridization
Cr
Cr
27HM ferromagnets
- From the figures it is clear that the
ferromagnetic coupling may cause the
half-metallic electronic structure. - On the other hand the half-metallic electronic
structure is impossible for the antiferromagnetic
coupling.
E
E
E
Ferro
E
E
E
Cr
Cr
Cr
Cr
half metallic
Antiferro
metallic
28When two magnetic ions coexist
E
E
Ferro
- Consider two magnetic ions, one of them (e.g. V)
being more than half and the other (e.g. Co)
less than half. - Compare two cases, parallel or anti-parallel
magnetic coupling. - For parallel (ferromagnetic) coupling the
superexchange plays a role. - On the other hand, for antiparallel
(antiferromagnetic) coupling the double exchange
works. - In contrast to normal DMSs, the double exchange
stabilizes antiferromagnetism while the
superexchange does ferromagnetism.
hybridization
V
Co
E
E
Antiferro
hybridization
hybridization
V
Co
29In electron-hole picture
E
E
Ferro
hybridization
V
Co
Electron state
hole state
E
E
Antiferro
hybridization
V
Co
30HM antiferromagnets
- While the double exchange is the first order
process with respect to the electron transfer,
the superexchange is the second order process.
For this reason the antiferromagnetic coupling is
preferable in the present situation. - Moreover, the antiferromagnetic state is
halfmetallic in contrast to the normal DMSs.
E
E
E
Ferro
E
E
V
Co
metallic
E
V
Co
Antiferro
half metallic
31(ZnCrFe)S
AF
F
SG
32Calculated TN
33(ZnVCo)S
AF
VB
CB
half metallic
F
VB
CB
metallic
SG
VB
CB
34(ZnCrCo)O
AF
VB
CB
half metallic
SG
VB
CB
metallic
35(ZnCrFe)Se
AF
VB
CB
half metallic
SG
VB
CB
metallic
36III-V based HM AF DMS?
Ferrimagnets but still metallic
(InMnFe)As
(GaCrCo)As
37Calculated TN
38Other examples
- host semiconductors
- II-VI compound semiconductors
- ZnO, ZnSe, ZnS, ZnTe,CdTe, etc.
- III-V compounds semiconductors
- GaAs, GaN, InAs, AlAs, InSb, GaSb, GaP, InP, etc.
- magnetic ions substituted for II or III elements
of the host semiconductors - Ti-Ni, V-Co, Cr-Fe, Cr-Co, V-Fe, etc.
- Ti-Fe, Ti-Co, V-Fe, V-Ni, Cr-Co, Cr-Ni, etc.
- Ti-V-Ni, Ti-V-Co, Ti-Ni-Co, V-Ni-Co, etc.
39And more
Chalcopyrites
- host semiconductors
- I-III-VI chalcopyrite type semiconductors
- CuAlS2, AgCaS2, etc.
- II-IV-V chalcopyrite type semiconductors
- CdGeP2, ZnGeP2, CdGeAs2, etc.
- magnetic ions substituted for I, II or III
elements - Ti-Ni, V-Co, Cr-Fe
- Ti-Fe, Ti-Co, V-Fe, V-Ni, Cr-Co, Cr-Ni, etc.
- Ti-V-Ni, Ti-V-Co, Ti-Ni-Co, V-Ni-Co, etc.
40Possible applications
- Magnetic RAM
- single-spin super conductors
- spin injection devices
- magneto optical devices
- spin-transistor
- spin FET
41Summary
- Half-metallic antiferromagnets
- new spintronics materials
- single spin superconductors
- etc.
- Other possible candidates
- Semiconductors
- Promising new spintronics materials