Title: Diapositive 1
1EGU Assembly 2007
Vienna, April 2007
Numerical Weather Prediction and Data Assimilation
LM-PAFOG Three-Dimensional Fog Forecast Model
with Parameterized Microphysics
M.Masbou1,2, A. Bott1, M. D. Müller3 Jan Cermak4
1 Meteorological Institute, University of Bonn,
Germany, mmasbou_at_uni-bonn.de 2 Laboratoire de
Météorologie physique, University Blaise Pascal,
Clermont-Ferrand, France 3 Institute of
Meteorology, Climatology Remote Sensing,
University of Basel, Switzerland 4 Laboratory for
Climatology Remote Sensing, University of
Marburg, Germany
2Fog Formation
Cooling Increase in humidity
1D
3D
Radiation fog
Advection fog
3D
3D
(1D)
Upslope fog
Valley fog
Precipitation fog
33D FOG Model LM PAFOG
Droplet number concentration
Liquid Water Content
LM-Dynamics
PAFOG-Microphysics
20 000 m
Boundary
Water/Ice Cloud
Precipitation
qc
Nc
2000 m
Nc
Fog/Stratus
Nc
qc
Soil Model
4PAFOG Microphysics
Supersaturation S
Assumption for droplet spectra Log-normal
0.2
0.25
0.3
CCN Concentration
0.35
D droplet diameter
Dc,0 mean value of D
sc standard deviation of size distribution
(sc0.2)
Diameter in µm
5PAFOG Microphysics
1- Activation Twomey (1954)
k and C depend on their environment (maritime,
rural, urban)
2a-Detailed Condensation/Evaporation
parameterized Köhler relation
Chaumerliac et al. (1987) and Sakakibara (1979)
2b-Time dependent relation between
supersaturation S and diameter D
3-Droplet size dependent sedimentation
Positive Definite Advection Scheme
Bott (1989)
6STANDARD-PAFOG Microphysics
LWC-Standard microphysics
LWC-PAFOG microphysics
500
0.5
g/kg
g/kg
Altitude
0.25
0
0.01
CCN-PAFOG microphysics
51.5
53.5
Latitude
500
70
1/cm3
Lindenberg Observatory 2005 September 27th 03
UTC 27 hours forecast
Altitude
40
10
0
51.5
53.5
Latitude
7Resolution of LM-PAFOG
Horizontal Resolution 100 x 100 pixels ?x,y
2.8 km
Vertical Resolution Atmosphere 40 levels
?zmin 4m
25 levels in the lowest 2 000 m
Soil - 8 levels ?zs,min 5 mm
8Statistical Study
METHOD
Comparison 1 pixel LM-PAFOG with visibility 2m
5 Categories lt 350m, lt 600m, lt 1000m, lt 1500m, lt
3000m
PERIOD
4 months forecast (September-December 2005)
LM-PAFOG
Initialization each day at 00 UTC
Forecast 48 hours
About 6000 hours forecast
FOG CLIMATOLOGY
35 Fog events
Fog episode very rare, 4 of studied time period
9Statistical Study at Lindenberg pixel
1.0
1000 m
Hit Rate
3000 m
0.8
0.6
0.4
0.2
0
0
6
30
48
12
36
42
hours
1.0
1000 m
False Alarm Rate
3000 m
0.8
0.6
0.4
0.2
0
0
6
30
48
12
36
42
hours
10Satellite Verification
October 2005, 6th Lindenberg
Lindenberg
11LM-PAFOG Satellite Verification
x103
2005 October,6th 00 UTC
10
No cloud cover
8
SAT FOG Product
LM-PAFOG Fog
6
No Pixels
Good Forecast
4
2
x103
0
2005 September,26th 00 UTC
48
0
hours
12
36
10
mid cloud cover
8
6
No Pixels
4
2
0
48
0
hours
12
36
12Comparison SYNOP Procedure
53.5
3000
2m Visibility Measurements
About 30 Stations
latitude
2005 December 6th 21 UTC
1000
51.5
LM-PAFOG
100
53.5
3000
latitude
1000
51.5
SYNOP
LM-PAFOG
100
12
15.5
12
15.5
longitude
longitude
132005 December 6th-Visibility 1000 m
30
Nb stations
Fog observed
LM-PAFOG Fog
No Stations
Good Forecast
1.0
0
12
36
48
hours
0
0.5
HR
First 6 hours Forecast
NIGHT Fog Forecast
DAY Fog Forecast
0
FAR
0
1.0
0.2
0.8
142005 December 6th-Visibility 3000 m
30
Nb stations
Fog observed
LM-PAFOG Fog
No Stations
Good Forecast
1.0
0
12
36
48
hours
0
0.5
HR
First 6 hours Forecast
NIGHT Fog Forecast
DAY Fog Forecast
0
FAR
0
1.0
0.2
0.8
15CONCLUSION
3D fog models with complex microphysics and high
resolution
Lindenberg study Low HR but also Low FAR
Satellite Comparison
- very good results in case of low cloudiness
- Interference of stratus in case of fog event
SYNOP Comparison
- Influence of visibility parameterization
- Better forecast by night than by day
Future
- Complete comparison SYNOP/LM-PAFOG on a larger
period
- Implement a better turbulence scheme for
soil/atmosphere exchange by day
Thanks
COST 722
16REFERENCES
Berry, E.X Pranger, M. P. (1974), Equation for
calculating the terminal velocities of water
drops, J. Appl. Meteor. 13, 108-113.
Bott, A. (1989), A positive definite advection
schemme obtained by nonlinear renormalization of
the advective fluxes, Monthly Weather Review 117,
1006-1015.
Bott, A. Trautmann, T. (2002), PAFOG a new
efficient forecast model of radiation fog and
low-level stratiform clouds, Atmospheric Research
64, 191-203.
Chaumerliac, N., Richard, E. Pinty, J.-P.
(1987), Sulfur scavenging in a mesoscale model
with quasi-spectral microphysic Two dimensional
results for continental and maritime clouds, J.
Geophys. Res. 92, 3114- 3126.
Sakakibara, H. (1979), A scheme for stable
numerical computation of the condensation
process with large time step, J. Meteorol. Soc.
Japan 57, 349-353.
Twomey, S. (1959), The nuclei of natural cloud
formation. Part ii The supersaturation in
natural clouds and the variation of cloud droplet
concentration, Geophys. Pura Appl. 43, 243-249.
17(No Transcript)
18Boundary Condition for Nc
Height
1 000m
PAFOG TOP
PAFOG TOP
CCN Concentration
1 000m
sc
Diameter in µm
19MSG SEVIRI Satellite Products
1- Fog is a cloud
2- in water phase
3- composed of small droplets
4- low above the ground and
5- stratiform
Satellite Products
20Pc- Cloud Confidence Level
Blackbody temperature difference
Cloudy
Clear