American Physical Society-APS, Beam Division. (APS.org) - PowerPoint PPT Presentation

About This Presentation
Title:

American Physical Society-APS, Beam Division. (APS.org)

Description:

... Small Anode Ion Source for Implanter B, P, As, Ge, ... Kaufman, RF grid extraction Ion Sources End Hall IS, Anode Layer Plasma Accelerators (ALPA) ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 81
Provided by: Dudni
Category:

less

Transcript and Presenter's Notes

Title: American Physical Society-APS, Beam Division. (APS.org)


1
?????? ?????????
  • ????????, ??????????, ???????????.
  • ?.?.????????

2
?????? ?????? ?????????? ?????? ? ?????????????
???????
  • American Physical Society-APS, Beam Division.
    (APS.org)
  • Budker Institute of Nuclear Physics
    (BINP),(inp.nsk.su)
  • G.I.Budker (1918-1977),
  • ????????-??????????? ????????? ????? 1965,
  • ??????- ????????????? ????????? ?????
  • ??????? ????????????- ??????????
  • ????? ??????? ????????? ?????? ? ????? ???????
    ??????? ??????? ??????

3
G.I.Budker (1918-1977)
4
????????? ?????? ? ??????? ????????
  • ??? ????????? ?????? ? ??????? ???????? ????
    ???????????
  • ???????????? ???????? ???????? ? ???????????
    ?????????? (Charge-exchange (stripping)
    injection, BDD, Budker,Dimov,Dudnikov, 1965)
  • ??????????? ?????????? ( Electron cooling,
    Budker, Skrinsky, Dikansky,Parkhomchuk,...)
  • ????????????-?????????? ????????? ?????????????
    ????? (Surface-Plasma Sources (SPS),BDD,
    Belchenko, Dimov, Dudnikov) ? ??????? ????????
    ??????.
  • ?????????????? ?????????? (Stochastic cooling,
    CERN,NP,W,Z)

5
Hadron Colliders
  • Proton Antiproton Collider 2x1 TeV, Tevatron,
  • Perimeter L6km, FNAL.gov
  • Head of Tevatron Department- Vladimir
    Shiltsev,F.F.NGU
  • accelerators
  • Proton Proton Collider LHC- CERN. CERN.sh
  • CERNcurer
  • Friendsofthensu.org

6
Vladimir Balakin (1968)- director of BINP
division Vladimi Shiltsev (1990), Head of
TEVATRON Department
7
40 ??? ?.?. ??? ? Chicago, FNAL ANL
8
ION SOURCES
  • ?????? ????????- Ion Source- ?????????? ???
    ???????? ?????? ?????? ???????????????
    ?????????????? ????????????? ??????? ?????, ??
    ?????????? ????? ???????? ????????.
  • ???? ?????????? ???????, ??????????????? ?
    ??????, ?????? ??????????.
  • ????????????? ? ?-?, ????????? ?????????
    I10eV,
  • ????????????? ?- ? ?, ??????????? ????????
    ?1eV
  • ????????? ??????????? ??????,?????????????,
  • ?????????? ??????????????????????,
    ??????????????, ?? ???????????,

9
?????????? ??
  • ??????????, ?????? ???????????,
    ????-?????????????,
  • ?????????? ????????,
  • ????????? ? ???,
  • ?????? ??????????, ????????? ??????, ??????
    ?????????, ?????-???? ?????????( micro/nano
    fabrication),
  • ?????????? ?????????? ( ????. ?.?.????????? ),
  • ??????
  • ???????????
  • International Conference Ion Sources (ICIS2003),
  • Electron, photon,ion beam, JVSTech.
  • Google.com, yahoo.com Ion Sources, Ion
    implantation, ICIS2003, .

10
???????
  • E. Goldstein 1886, ?????? ?????????? ???????
    ?????, ?????????? ????,
  • ??????????? ????????, ?????.
  • ???????????????? ?????????? ????????, Lawrenc,
  • ?????? ??????????? ? ??????????????,
  • ??????????, ???????????? ????????, ???(SPS),
  • ???,
  • ?????-???? ??????????.

11
????????? ?????? ??????, ????????
  • ??????? ????? WeU.
  • ????? ?Z
  • ?????????????- ??? ??????? ????? I, ??- ??,
  • ????????? ???? JI/S.
  • ??????? ??????? ??????????? ????????(??????????
    ??????????? ?t 1eV)
  • ???????? ( ?????????? ??????? ?????) e r vt .
  • ??????? ????? ?????????????/ (????????)2 I/e2
    J/Tt .
  • Energy spread ?W/W
  • Perveance P I/U3/2 .
  • Lifetime
  • Cost for Ownership

12
Emittance, Brightness, Ion Temperature
d
y
Emission slit
l
Emittance
Normalized emittance
x
?x
Normalized brightness
?a
Half spreads of energy of the transverse motion
of ions
Reduced to the plasma emission slit
Characteristics of quality of the beam formation
13
????????????? ?????? ??????????
  • ?????????? ??????????? ????? ? ?????? ?? ?
    2?
  • ? ??????? ???????? ??????????? ????, ??,???,
  • ????????????, ????????????? ?????, ?????????????
  • ? ????????????? ?????????? ?????????????,
    ?????????????, ? ??????? ????????,
  • ????????????-?????????? (Surface-Plasma Sources)
    (SPS)
  • ????????????,
  • ????????
  • ?????????????????? (EBIS)
  • ????????????(DC,CW), ??????????.
  • Polarized ions.

14
??????? ???????????? ?????? ??????
  • ???????????? ?????? ??????- ????????? ?
    ??????????? ????????????? ????? ????? ????????? ?
    ????????????.
  • ????????????????? ??????? ??????.
  • ????????????? (Computer simulation).
  • ???????????????? ?????, ?????????????.
  • ??????????????? ??????????? ??????, ????????????
    ???????.
  • ??????????? ????????????????? ??????.

15
RF Ion Source
16
?????????? ????????
17
Budker Institute of Nuclear Physics
18
Arc- discharge- based ion source
19
DNBI arrangement at TCV
20
Intensity of Negative Ion Beams 1971-discovery
of Cesium Catalysis.
21
Contents
  • Introduction.
  • Historical remarks.
  • Change-Exchange injection.
  • Negative ion production in surface- plasma
    interaction.
  • Cesium catalysis.
  • Surface Plasma Sources- SPS.
  • Discharge stability noiseless operation.
  • Charge-exchange cooling. Electron
    suppression.
  • Beam extraction, formation, transportation.
  • Space charge neutralization. Instability
    damping.
  • SPS design. Gas pulser, cesium control,
    cooling.
  • SPS life time. SPS in accelerators.
  • Further development.
  • Summary.
  • Acknowledgment.

22
History of Surface Plasma Sources Development
(J.Peters, RSI, v.71, 2000)
23
First version of Planotron (Magnetron) SPS, INP,
1971, Beam current up to 300 mA, 1x10mm2
24
Schematic Diagrams of Surface Plasma Sources with
Cesium Catalysis of Negative Ion formation
(a) planotron (magnetron) flat cathode (b)
planotron geometrical focusing (cylindrical
and spherical) (c) Penning discharge SPS
(Dudnikov type SPS) (d) semiplanotron (e) hollow
cathode discharge SPS with independent
emitter (f) large volume SPS with filament
discharge and based emitter (g) large volume SPS
with anode negative ion production (h) large
volume SPS with RF plasma production and emitter
1- anode 6- hollow
cathode 2- cold cathode emitter 7-
filaments 3- extractor with 8-
multicusp magnetic magnetic system
wall 4- ion beam
9- RF coil 5- biased emitter 10-
magnetic filter
25
Large Volume Surface-Plasma Sources
26
Neutral Beam Injector for Tokamak, 40A, 0.5 MeV
27
22.1 Development of a Large Volume Negative Ion
Source for ITER Neutral Beam Injector
  • Y. Okumura, T. Amemiya, T. Iga, M. Kashiwagi, T.
    Morishita, M. Hanada, T. Takayanagi, K. Watanabe,
    Japan Atomic Energy Research Institute, Japan
  • Design of the large negative ion source for the
    neutral beam injector in International
    Thermonuclear Experimental Reactor (ITER) has
    been completed. The ion source is required to
    produce hydrogen/deuterium negative ion beam of
    40MW(40A, 1MeV) for pulse duration of more than
    1000s. The ion source is a cesium-seeded volume
    source, consisting of a multi-cusp plasma
    generator and a five-stage electrostatic
    accelerator. Negative ions are extracted and
    accelerated in multi-aperture grids, where 1300
    apertures of 14mm in diameter is distributed over
    the area of 60cm x 160cm. Multiple beamlets
    extracted from the grids should be focused
    precisely toward a focal point to achieve a high
    geometrical efficiency of the neutral beam
    injector. Beam optics in the multi-stage
    electrostatic accelerator has been studied in
    JAERI 400keV H- ion source. It was demonstrated
    that convergent beamlets having a divergence of
    3mrad are produced and focused within an accuracy
    of several mrad. Beamlet-beamlet interaction is
    observed and the experimental result agrees well
    with the 3D ion trajectory simulation. Negative
    ion beam acceleration in a 1MeV prototype
    accelerator is in progress using a new vacuum
    insulated accelerator column. Latest status of
    the RD for ITER ion source is presented.

28
H- Detachment by Collisions with Various
Particles and Resonance Charge-Exchange Cooling
Resonance charge -exchange cooling
29
Discharge Stability and Noise
n,1016 cm-3
noiseless
Diagram of discharge stability in coordinates of
magnetic field B and gas density n
no discharge
n
noisy
Bmin
B, kG
µ e?/m (?2 ?2)
µ
noiseless
The effective transverse electron mobility µ vs
effective scattering frequency ? and cyclotron
frequency ?
? / ?
30
Discharge Noise Suppression by Admixture of
Nitrogen
P.Allison, V. Smith, et. al. LANL
no N2
QN2 0.46 sccm
31
Design of SPS with Penning Discharge
32
Discharge voltage
Noiseless operation
Discharge current
100 Hz
Extraction voltage
Tested for 300 hs of continuous operation
Extraction current
H- current after magnetic analyzer
33
Fermilab Magnetron with a Slit Extraction
34
Discharge Parameters and Beam Intensity in
Fermilab Magnetron
200
time, mks
0
0
Beam current, mA
80
100
0
time, mks
35
Beam Intensity vs Discharge Current and
Extraction Voltage in Fermilab Magnetron
36
?????? ????? ??? ??????????
?. ?. ????????
37
Ion Beams for Technology
  • Vadim Dudnikov
  • Brookhaven Technology Group, Inc.
  • e-mail dvg43_at_yahoo.com

ICIS 2003, Dubna, Russia September13, 2003
38
Contents
  • Introduction.
  • Ion Beam Technologies Ion Implantation. SOI.
    Deposition. Etching.
  • Micro/Nano fabrication.
  • Ion Implantation.
  • Ion Sources for Ion implantation.
  • Beam line optimization.
  • Space charge neutralization.
  • Plasma Accelerators.
  • Summary.
  • Acknowledgment.

39
Ion implantation in semiconductor industry
  • Major Players
  • Axcelis (former EATON)
  • VSEA( former Varian)
  • Applied Materials
  • High Energy(1-5 MeV)
  • Tandem(negative ion), Linac(MC).
  • Low Energy Beam
  • Plasma Immersed Implantation

40
Peter Rose in IBIS-Krytec
41
Silicon on Insulator (SOI)
42
SMART CUT, SOITECHigh dose Proton implantation
and
43
ION IMPLANTATION for SEMICONDUCTORIon
implantation has become the technology preferred
by industry to dope semiconductors with
impurities in the large scale manufacture of
integrated circuits. Ion dose and ion energy are
the two most important variables used to define
an implant step. Ion dose relates to the
concentration of implanted ions for a given
semiconductor material. Typically, high current
implanters (generally greater than 10 milliamps
(mA) ion beam current) are used for high dose
implants,while medium current implanters
(generally capable of up to about 1 mA beam
current) are used for lower dose applications.
44
Ion energy is used to control junction depth in
semiconductor devices. The energy levels of the
ions which make up the ion beam determine the
degree of depth of the implanted ions. High
energy processes such as those used to form
retrograde wells in semiconductor devices require
implants of up to a few (1-5) million electron
volts (MeV), while shallow junctions may only
demand energies below one thousand electron volts
(1 KeV).
45
Now is most important low energy implantation
  • Upgrading of existing implanters
  • Space Charge Neutralization (SCN)
  • Molecular ions Decaboran B10H14, B2H6, As2,
  • J A U3/2/M1/2 .

46
A typical ion implanter comprises three sections
or subsystems (i) an ion source for outputting
an ion beam, (ii) a beamline including a mass
analysis magnet for mass resolving the ion beam,
(iii) a target chamber which contains the
semiconductor wafer or other substrate to be
implanted by the ion beam. The continuing trend
toward smaller and smaller semiconductor devices
requires a beamline construction which serves to
deliver high beam currents at low energies. The
high beam current provides the necessary dosage
levels, while the low energy levels permit
shallow implants. Source/drain junctions in
semiconductor devices, for example, require such
a high current, low energy application.
47
High current low energy implanters
48
Typical high current implanter for semiconductor
49
Bernas, Small Anode Ion Source for Implanter
  • B, P, As, Ge,
  • 1,4- filaments 2-gas discharge chamber 3-
    emission slit 5-screen
  • 6-cathode insulator 7-small anode
  • 8-anode insulator.
  • SDS- Gas system safe delivery system.
  • Suppliers of parts Glemco.com
  • egraph.com

50
Schematic of beam extraction and 2D simulation
  • Three electrode extraction system
  • 5mm/div
  • slit 0.2x9 cm
  • Current 60mA,
  • B, BF2, F,
  • Ux3 kV
  • Us15 kV

51
Boron beam current VS beam energy
  • Analyzed boron 11 beam current from Bernas and
    SAS sources with space charge neutralization by
    electronegative gases

52
Indirect heated cathode ion source, MC
  • 1-filament 2-cathode holder 3-cathode 4- gas
    discharge chamber
  • 5-anode 6-plasma 7-plasma plate 8-emission
    slit 9-small anode

53
Implanter beam line with Space Charge
Neutralization
  • Electronegative
  • gas and plasma for
  • space charge neutralization
  • VESUVII-8M

54
Patent for Space Charge Neutralization with EN
Gas
55
Beam line with advanced space charge
neutralization
  • 1-ion source
  • 2-ion beam
  • 3-gas injector
  • 4-magnetic pole
  • 5-ion beam
  • 6-gas injector
  • 7-beam scaner
  • 8-beam damp.

56
High Current Implanter
57
Low Energy Beam instability
  • Boron ion beam with energy 5 keV

58
Effect of SCN with electronegative gas
  • Ib-ion beam current
  • p-vacuum gauge reading
  • Iex-extractor current
  • Q-gas flux
  • BF3,SF6,CF4

59
Low energy beam after analyzer
  • Boron ion beam
  • with energy 3 keV, up to 4 mA

60
Ion beam after analyzer after gas injection
  • Boron ion beam 3 keV
  • Q of BF3
  • 4 ccm.

61
Boron beam mass spectrum, 5 keV
  • Mass spectrum for different gas injection

62
Damping of beam instability by gas injection
  • Boron ion beam 5 keV
  • for different flux of BF3 Q, ccm(N2)

63
EATON Patent for Space Charge Neutralization
64
Low energy beam improvement
  • SCN by
  • electronegative gas

65
Improving of low energy Boron beam
  • Advanced SCN

66
As beam improving by SCN and molecular ions
  • Molecular ions used for increase a low energy
    beam intensity
  • As2,
  • Decaboran
  • B10H14

67
ETCHING, DEPOSITION, Micro/Nano Fabrication
  • Major Players
  • Veeco Instruments,Inc
  • Applied Materials
  • Advanced Energy Industrial,
  • ..
  • Kaufman, RF grid extraction Ion Sources
  • End Hall IS,
  • Anode Layer Plasma Accelerators (ALPA)

68
Schematic Diagrams of Surface Plasma Sources with
Cesium Catalysis of Negative Ion Formation
(a) planotron (magnetron) flat cathode (b)
planotron geometrical focusing (cylindrical
and spherical) (c) Penning discharge SPS
(Dudnikov type SPS) (d) semiplanotron (e) hollow
cathode discharge SPS with independent
emitter (f) large volume SPS with filament
discharge and based emitter (g) large volume SPS
with anode negative ion production (h) large
volume SPS with RF plasma production and emitter
1- anode 6- hollow
cathode 2- cold cathode emitter 7-
filaments 3- extractor with 8-
multicusp magnetic magnetic system
wall 4- ion beam
9- RF coil 5- biased emitter 10-
magnetic filter
69
Schematic of B- SPS, 0.5 mA
  • 1- cooled flange with electric and gas
    feedthroughs
  • 2- high voltage vacuum insulator
  • 3- vacuum chamber
  • 4-gas discharge chamber-cathode
  • 5 anode
  • 6- emitter
  • 7- high voltage extractor insulators
  • 8- magnet 9- base plate with extractor 10- ion
    beam 11- suppression grid 12- collector liner
    13- collector 14- permanent magnets 15-
    pepper-port emittance registration 16- analyzer
    magnet with mass spectrum registration.

70
Compact HNISPS, 0.5 mA
  • 1-Anode 2- Hollow Cathode 3- Anode Insulator
  • 4- Spherical Emitter
  • 5- Front Plasma Plate with emission aperture
  • 6- Emission Aperture
  • 7- Negative Ion Flux
  • 8- Bottom Plate 9- Discharge Chamber Holders-
    Coolers 10- Insulator of Emitters Holder 11-
    Emitters Holder-cooler 12- Gas delivery tube
    13- Cesium Supply 14- Insulating tube of
    emitter 15- Emitters screen.

71
Schematic of ALPA Source
  • 1-anode
  • 2-cathode
  • 3-gap
  • 4- central pole
  • 5-ion beam
  • 6-yoke
  • 7-gas feed
  • 8-p.magnet
  • 9-cooling
  • 10- insulator.

72
Photograph of ALPA Source
73
Oxigen Ion beam from ALPA source
74
BDD, ICIS2001, ALPA source
75
(No Transcript)
76
(No Transcript)
77
Advantages of ALPA Sources
78
(No Transcript)
79
(No Transcript)
80
Summary
  • Modern trend in ion beam technology, as ion
    implantation for semiconductor, etching,
    deposition, are considered.
  • Mass production of Silicon on Insulator (SOI) by
    Smart Cut Technology use high current proton
    implanters. Smart Cut Technology now main method
    of SOI production.
  • Transition to SOI is limited needs of high
    energy implantation.
  • Now is most important high current low energy ion
    implanters. Methods for increase intensity and
    stability of low energy beams are discussed.
  • Development of ion sources for implanters,
    improving of space charge neutralization,
    instability damping are components of implanters
    upgrading.
  • Anode Layer Plasma Accelerators (ALPA) for broad
    spectrum of ion beam application now become very
    popular and many companies start development and
    manufacturing of ALPA sources.
Write a Comment
User Comments (0)
About PowerShow.com