Title: Order Parameter Description of Shear Flows in Granular Media
1Order Parameter Description of Shear Flows in
Granular Media
- Igor Aronson (Argonne)
- Lev Tsimring, Dmitri Volfson (UCSD)
- Publications
- Continuum Description of Avalanches in Granular
Media, Phys. Rev. E 64, 020301 (2001) - Theory of Partially Fluidized Granular Flows,
Phys. Rev. E 65, 061303 (2002) - Order Parameter Description of Stationary Gran
Flows, Phys. Rev. Lett. 90, 254301 (2003) - Partially Fluidized Granular Flows, Continuum
theory and MD Simulations, Phys. Rev. E. 68,
021301 (2003) - Stick-Slip Dynamics in a Granular Layer under
Shear, Phys. Rev. E 69, 031302 (2004) - Supported by US DOE, Office of Basic Energy
Sciences
SAMSI Workshop, NC 2004
2Outline
- Introduction
- Experimental observations of partially fluidized
granular flows - Theoretical description order parameter model
- Examples
- Near-surface shear flows
- Stick-slips in shear flows
- Avalanches in thin chute flows
- MD simulations and fitting the OP theory
- Conclusions
3Onset of Motion FluidizationQuest for
Constitutive Relation
- Various phenomena avalanches, slides, surface
flows, stick-slips are related to the transition
from granular solid to granular liquid - Theoretical descriptions of granular solid and
granular liquid are very different need for
unification - Universal description of partially fluidized
flows requires a constitutive relation valid for
both granular solid and granular liquid
4Recent publications
- Experiments
- Nasuno, Kudrolli, Bak and Gollub, PRE, 58, 2161
(1998). - Daerr and Douady, Nature, 399, 241 (1999)
- Pouliquen, Phys. Fluids, 11, 542 (1999)
- Veje, Howell, and Behringer, PRE, 59, 739 (1999)
- Mueth, Debregeas, Karczmar, Eng, Nagel, Jaeger,
Nature, 406, 385 (2000) - Komatsu, Inagaki, Nakagawa, Nasuno, PRL, 86, 1757
(2001) - Bocquet, Losert, Schalk, Lubensky, and Gollub,
PRE 65, 011307 (2001) - Molecular dynamics
- Silbert et al, PRE 64, 051302 (2002)cond-mat/020
6188 - Aharonov and Sparks, PRE 65, 051302 (2002)
- Continuum theories
- Bouchaud, Cates, Ravi Prakash, and Edwards,
J.Phys.France, 4, 1383 (1994) - Boutreux, Raphael, and de Gennes, PRE, 58, 4692
(1998) - Bocquet, Losert, Schalk, Lubensky, and Gollub,
PRE 65, 011307 (2001) - Rajchenbach, Phys. Rev. Lett. 88, 014301 (2002)
89, 074301 (2002) - Aranson and Tsimring, PRE, 64, 020301(R)
(2001)65, 061303 (2002)
5Near-surface granular flows
Komatsu, Inagaki, Nakagawa, Nasuno, PRL, 86, 1757
(2001)
h
exponential velocity profile
6Driven shear flow under a heavy plate
load
Tsai, Voth, Gollub, PRL 2003
Udriving 7.2mm/s 12 d/s
Particle size d0.6 mm Channel width ? 30d,
circumference ? 750d, depth 050d.
7Taylor-Couette granular flow (2D)
Veje, Howell, and Behringer, Phys.Rev.E, 59, 739
(1999)
Velocity profile
8Taylor-Couette granular flow (3D)
Mueth, Debregeas, Karczmar, Eng, Nagel, Jaeger,
Nature, 406, 385 (2000)
60mm
9Taylor-Couette flow - 2
Bocquet et al, 2001
10Chute flows
O.Pouliquen, 1999
Daerr Douady, 1999
11Avalanches in chute flows
Daerr Douady, Nature, 399, 241 (1999)
Triangular (down-hill)
Balloon (up-hill)
12Avalanches phase diagram
Daerr Douady, Nature, 399, 241 (1999)
uphill avalanches
spontaneous avalanching
Bistability
downhill avalanches
No flow
13Stick-slip motion of grains
Nasuno, Kudrolli, Bak and Gollub, PRE, 58, 2161
(1998).
sliding speed V5.67 mm/s
sliding speed V5.67 mm/s
sliding speed V11.33 mm/s
14Stick-slip motion - 2
15Theoretical model
Euler equation
where
- density of material ( 1) g
- gravity acceleration v - hydrodynamic
velocity D/Dt - material
derivative - stress tensor
div v0 incompressibility condition
16Stress-stain relation for partially fluidized
granular flow
Here
- strain rate tensor
- viscosity
- quasistatic (contact) part
fluid
solid
has non-zero off-diagonal elements
17Stress-stain relation in partially fluidized
granular matter
- the diagonal components (pressures)
related to the components of the static stresses
may weakly depend on the order parameter - shear stresses are strongly dependent on the
order parameter r - viscosity h may also weakly depend on the order
parameter
18Equation for the order parameter
f
Ginzburg-Landau free energy for shear melting
phase transition
r
0
1
t0,l characteristic time length
r
1
Two stable states r rf and r 1 One
unstable state ru
d is a control parameter
d
1
0
r0 liquid r1 solid
19Near-surface granular flows
z
no gravity
x
Order parameter equation
Boundary condition
Control parameter
or by differentiating
20Near-surface granular flows - theory (cont.)
,
Constitutive relation
Balance of forces requires
In non-dimensional units,
21Analogy Maxwell stress relaxation condition
In visco-elastic fluids,
In our case,
fluid
solid
22Stationary shear flow profile at large W
23Relaxation oscillations at small W
Bifurcation diagram
24Asymptotic velocity profiles (2D vs 3D)
Theory
Why?
253D shear granular flow
Force balance
In deep granular layers,
Control parameter
are major and minor principal stresses
and
263D shear granular flow (cont.)
Explicit z-dependence in the control parameter!
From OP equation near
and the same scaling for v
27Chute flow
Equilibrium conditions
Stresses
Control parameter
(j1, j2 - static/dynamic repose angles)
28Chute flow
Boundary conditions r 1 for z -h
(sticky bottom) r z 0 for z 0 (free
surface)
Stability of the uniform solid state r 1
OPE
Perturbation
Eigenvalue
Stability limit
29Flow existence limit
Stationary OPE
Solution exists only for
1st integral
30Single mode approximation
Close to the stability boundary
Here
31Constant feeding flux at the top
t
1000
0
Stationary flow solutions
40
1.0
.99
0.9
.95
0.8
.90
d
0.7
30
0.6
0.5
0
40
80
.85
J/
m
h
20
.55
.60
.65
10
.70
0
0
10
20
30
40
50
60
J/
m
500
x
periodic avalanches
continuous flow
32Two types of avalanches (theory)
Downhill
Uphill
33Two types of avalanches
Daerr Douady, Nature, 399, 241 (1999)
Triangular (downhill)
Balloon (uphill)
34Avalanche cross-sections
uphill
20
Uphill front speed
Secondary avalanche
h
10
0
downhill
20
h
10
1st order transition!
0
0
200
400
600
x
35Deep chute (sandpile)
For hgtgt1,
- x
Symmetry x
No triangular avalanches in sanpiles!
36Quantitative comparison with experiment
Model parameters
t, characteristic time l, characteristic
length j1,j2, static/dynamic repose angles h,
viscisity coefficient
Daerr Douady
(particle diameter)
Ertas et al (MD simulations of chute flow)
37Phase diagram (theory and experiment)
38What is the order parameter?
39Molecular Dynamics Simulations
We consider non-cohesive, dry, disk-like grains
with three degrees of freedom. A grain p is
specified by radius Rp, position rp,
translational and angular velocities vp and wp.
Grains p and q interact whenever they overlap, Rp
Rq - rp rp gt 0
We use linear spring-dashpot model for normal
impact, and Cundall-Strack model for oblique
impact.
Stress tensor
Restitution coefficient e
2304 particles (48x48), e 0.82 m 0.3
Pext 13.45,Vx24
Friction coefficient m
All quantities are normalized using particle size
d, mass m, and gravity g
40Order parameter for granular fluidizationstatic
contacts vs. fluid contacts Microscopic Point of
View
- Zst is the static coordination number
- the number of long-term ( gt1.1tc)
- contacts per particle.
- Z is the total coordination number
- the total number of contacts per
- particle.
Stationary profiles of coordination numbers Z,
Zst, and order parameter in a system of 4600
grains. e 0.82 m 0.3 Pext 13.45, Vx 48
41Order parameter for granular fluidizationElastic
vs Kinetic Energy Macroscopic Point of View
- U elastic energy stored in grains
- T fluctuational kinetic energy (granular
temperature)
42Stick-slip granular friction
43Stress tensor
Reynolds stress tensor part of the stress
tensor due to short-term collisional contacts (t
lt 1.1tc). part of the stress tensor due to
force chains between particles ( t gt
1.1tc). Static stress tensor
Fluid stress tensor
44Stationary near-surface flow shear stress
45Couette flow in a thin granular layer (no gravity)
500 particles (50x10), e 0.82 m 0.3 Pext
13.45
Adiabatic change in shear force
46Bifurcation diagram
47Small initial perturbation in a bistable region
48Order parameter fixed points
MD simulations
- 500 particles (50x10),
- 0.82 m 0.3
OP equation
49Fitting the constitutive relation
Fit qy(r) (1-r1.2)1.9
Fit q(r) (1-r)2.5 Phenomen. theory q(r)1-r
qx(r) (1-r)1.9
50Newtonian Fluid Contact Part
Kinematic viscosity in slow dense flows h12
51Relation to Bagnold Scaling
Bagnold relation (1954)
Silbert, Ertas, Grest, Halsey, Levine, and
Plimpton, Phys. Rev. E 64, 051302 (2001) Fitting
Bagnold scaling relation
52Fitting the constitutive relation
Fit f(r) 1 - (1-r)3
53Fluid stress vs. shear strain rate
2300 grains e 0.82 m 0.3 Pext13.45.
Bagnold scaling?
54Heavy plate under external forcing no gravity
Equation of motion for the plate
Constitutive relation
Order parameter equation
55Heavy plate under external forcing no gravity
56Shear flow of grains with gravity
MD simulations, box 48x48
57Shear flow with gravity continuum model
58Shear flow under gravity continuum model
59Slip event MD simulations
60Slip event MD simulations
61Slip event MD simulations
62Shear flow of grains with gravity
MD simulations box 96x48
63Example stick-slips thick surface driven
granular flow with gravity
m
k
V0
y
Set of equations for sand
g
Ly
x
Equations for heavy plate
5000 particles (50x100), e 0.82 m 0.3
Pext 10,50,Vtop5,50
64Simplified theory reduction to ODE
- Stationary OP profile
- x width of fluidized layer
- (depends on shear stress), r1(4r-1)/3
- Stationary solution exists only for specific
value of d(y) (symmetry between the roots of OP
equations) which fixes position of the front
y
x
g
x
65Perturbation theory
- Substituting r into OP equation and performing
orthogonality one obtains - Regularization for xltlt1 (l is the growth rate
of small perturbations) -
66Resulting 3 ODE
- 2 Equations for Plate
- 1 Equation for width of fluidized layer
67Comparison Spring deflection vs time
theory PDE
theory ODE
MD simulations
68Constitutive relations for stress components
indeterminacy
Static stress tensor
Force balance
Veje, Howell, and Behringer, Phys.Rev.E, 59, 739
(1999)
Symmetry
(only six relations, need 3 more!)
Linear elasticity Hooks law do not apply
Linear relation between shear and normal
stresses, force chains and stress inhomogeneity
69Conclusions
- Stress tensor in granular flows is separated into
a fluid part and a solid part. The ratio of
the fluid and solid parts is fitted by the
function of the order parameter ? F (1-r)a?, ?
S (1 -(1-r)a) ?, a ? 2.5. - The dynamics of the order parameter is descibed
by the Ginzburg-Landau equation with a bistable
free energy functional. - The free energy controlling the dynamics of the
order parameter, can be extracted from molecular
dynamics simulations.
70Future directions
- Self-consistent description of stress evolution
- Elaboration of statistical features of
fluidization transition, effect of fluctuations. - Extraction of order parameter from experimental
data