Radio detection of Cosmic Ray Air Showers - PowerPoint PPT Presentation

About This Presentation
Title:

Radio detection of Cosmic Ray Air Showers

Description:

SUBATECH - Universit de Nantes - EMN - IN2P3 ... Human activity. Solar activity. Low rate 1Hz. 100% duty cycle (mV) 2. 10. Arnaud Bell toile ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 17
Provided by: ZEU7
Category:
Tags: air | cosmic | detection | radio | ray | showers

less

Transcript and Presenter's Notes

Title: Radio detection of Cosmic Ray Air Showers


1
Radio detection of Cosmic Ray Air Showers
The CODALEMA experiment
  • A. Bellétoile
  • for CODALEMA collaboration
  • SUBATECH - Université de Nantes - EMN - IN2P3
  • Observatoire de Paris-Meudon, Station de Nançay -
    INSU
  • LAL - IN2P3
  • ESEO
  • LPSC Grenoble - IN2P3

2
Summary
  • Origin characteristics of the signal
  • Experimental device
  • First results evidences for a radio signal
    associated with CR Air Shower

3
Origin characteristics of the radio signal
  • Radio detection interests
  • Shower direction
  • Triangulation
  • Primary particle energy
  • Amplitude of the electric field
  • Nature
  • Longitudinal profile of the shower (Xmax)
  • Production mechanisms
  • Negative charge excess in the shower
  • 10 e- / e
  • Charge deflection in the Earth s magnetic field
  • Probably the main contribution
  • Detection at large distance is possible

4
Theoretical signal
  • Vertical shower _at_ E  1017 eV and small impact
    parameter
  •  H. R. Allan (1971)
  • ?pk150 ?V/m
  • FWHM duration 8 ns
  •  Broad-band antennas needed
  •  1-100 MHz

5
The Codalema Experiment
  • Decametric Array of the radio observatory of
    Nançay
  • 144 log periodic antennas
  • Bandwidth 1-100 MHz
  • High sensitivity

6
First steptransient detection
7
Test of triangulation
  • Triangulation
  • Minimum 3 tagged antennas
  • Plane wave front hypothesis

8
Particle detectors as trigger
  • 4 particle detectors in coincidence
  • Active area 7000 m2
  • Counting rate 0.7 evt/min
  • Energy threshold1.1015 eV
  • No particle detectors pollution
  • No correlation between PM and antenna signal
    amplitudes

9
Time correlation
  • ? 3 antennas flagged
  • Time correlation distribution
  • Fortuitous events
  • Flat distribution
  • Candidates
  • Sharp peak (lt 100ns)

10
Arrival direction correlation
  • Good events
  • Angular difference 2.5º RMS
  • 0.3 evt / day
  • Rough estimation of the energy threshold
  • gt 5.1016 eV

11
Field topologies (in progress)
  • Variable antenna multiplicity
  • Field amplitudes measured
  • From 250 ?V/m to 1.2 mV/m in 40 - 70 MHz
  • Extension of the field
  • gt 100 m
  • more antennas needed

12
Conclusion
  • Evidence for radio signal associated with CR Air
    Showers
  • Operating instrument
  • Codalema program
  • Additionnal antennas and particle detectors
  • long distance radio signal behavior
  • core position
  • shower energy
  • Stand-alone antennas associated with giant
    detector

13
Transient rate with one antenna as trigger
(stand-alone mode)
  • Knowledge of the radio background
  • Atmospheric conditions
  • Human activity
  • Solar activity
  • Low rate
  • lt1Hz
  • 100 duty cycle

14
Simulation of the signal _at_ E1020 eV
  • Vertical shower
  • With charge excess only
  • b0.5 km Epeak1500 ?V/m
  • FWHM duration100 ns
  • b1km Epeak200 ?V/m
  • FWHM duration 275 ns
  • broad-band antennas needed
  • 1-100 MHz
  • plus
  • geomagnetic field contribution expected 10 times
    greater
  • inclined shower configuration more favourable

15
Interaction Scintillators/Antennas
No signs of pollution
16
Résultats préliminaires
Direction darrivées scintillateurs
Taux de trigger (particules) Pour 4 stations
0.7 evt/mn gt seuil Eincident 1015 eV
limite angulaire 0 lt q lt60 pas de limite en
F
Write a Comment
User Comments (0)
About PowerShow.com